Skip to content

Commit

Permalink
Add initial files
Browse files Browse the repository at this point in the history
  • Loading branch information
zoharsan authored Jan 19, 2021
0 parents commit f51b2da
Show file tree
Hide file tree
Showing 8 changed files with 1,391 additions and 0 deletions.
50 changes: 50 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# - Please check the following URLs for the driver versions to pick up:
# All drivers: https://docs.snowflake.net/manuals/release-notes/client-change-log.html#client-changes-by-version
# ODBC: https://sfc-repo.snowflakecomputing.com/odbc/linux/index.html
# JDBC: https://repo1.maven.org/maven2/net/snowflake/snowflake-jdbc/
# Spark: https://repo1.maven.org/maven2/net/snowflake/spark-snowflake_2.11
# Note: For Spark, the docker currently uses Spark 2.4 with Scala 2.11
# - Update lines 17 to 22 (beginning with ARG) with the correct levels to be deployed which executes deploy_snowflake.sh Script
# - For the almond & scala kernel, please check the following link:
# https://almond.sh/docs/quick-start-install
# - Note: For the jupyter scala kernel, the version can be set with the variable scala_kernel_version
# Questions: Zohar Nissare-Houssen - [email protected]
#

#Start from the following core stack & driver levels versions
FROM jupyter/all-spark-notebook:1c8073a927aa
USER root
ARG almond_version=0.10.9
ARG scala_kernel_version=2.12.11
ARG odbc_version=2.22.3
ARG jdbc_version=3.12.16
ARG spark_version=2.8.3
ARG snowsql_version=1.2.10
RUN apt-get update && \
apt-get install -y apt-utils && \
apt-get install -y libssl-dev libffi-dev && \
apt-get install -y vim
RUN sudo -u jovyan /opt/conda/bin/curl -Lo coursier https://git.io/coursier-cli
RUN chown -R jovyan:users /home/jovyan/coursier && chmod +x /home/jovyan/coursier
RUN sudo -u jovyan /home/jovyan/coursier launch --fork almond:$almond_version --scala $scala_kernel_version -- --install
RUN sudo -u jovyan /opt/conda/bin/python -m pip install --upgrade pip
RUN sudo -u jovyan /opt/conda/bin/python -m pip install --upgrade pyarrow
RUN sudo -u jovyan /opt/conda/bin/python -m pip install --upgrade snowflake-connector-python[pandas]
RUN sudo -u jovyan /opt/conda/bin/python -m pip install --upgrade snowflake-sqlalchemy
RUN sudo -u jovyan /opt/conda/bin/python -m pip install --upgrade plotly
RUN conda install pyodbc
RUN conda install -c conda-forge jupyterlab-plotly-extension --yes
RUN apt-get install -y iodbc libiodbc2-dev libssl-dev
COPY ./deploy_snowflake.sh /
RUN chmod +x /deploy_snowflake.sh
RUN /deploy_snowflake.sh
RUN mkdir /home/jovyan/samples
COPY ./pyodbc.ipynb /home/jovyan/samples
COPY ./Python.ipynb /home/jovyan/samples
COPY ./spark.ipynb /home/jovyan/samples
COPY ./SQLAlchemy.ipynb /home/jovyan/samples
RUN chown -R jovyan:users /home/jovyan/samples
RUN sudo -u jovyan /opt/conda/bin/jupyter trust /home/jovyan/samples/pyodbc.ipynb
RUN sudo -u jovyan /opt/conda/bin/jupyter trust /home/jovyan/samples/Python.ipynb
RUN sudo -u jovyan /opt/conda/bin/jupyter trust /home/jovyan/samples/spark.ipynb
RUN sudo -u jovyan /opt/conda/bin/jupyter trust /home/jovyan/samples/SQLAlchemy.ipynb
338 changes: 338 additions & 0 deletions Python.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,338 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# Import the various modules required to make a simple Snowflake connection from Python\n",
"import snowflake.connector\n",
"from snowflake.connector.converter_null import SnowflakeNoConverterToPython\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Modify this cell to include information about your demo account\n",
"ACCOUNT = 'xxxx'\n",
"USER = 'xxxx'\n",
"PASSWORD = 'xxxx'\n",
"\n",
"con = snowflake.connector.connect(\n",
" user=USER,\n",
" password=PASSWORD,\n",
" account=ACCOUNT\n",
" ,converter_class=SnowflakeNoConverterToPython\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Create a variable called sql and specify a query that it will store\n",
"sql = \"select * from sales.public.customer limit 10000\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<snowflake.connector.cursor.SnowflakeCursor at 0x7f689ce3e5f8>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Specify the virtual warehouse and role we want to use\n",
"con.cursor().execute(\"USE WAREHOUSE xxxx\")\n",
"con.cursor().execute(\"USE role xxxx\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# Execute the query using the Python connector\n",
"#%%time\n",
"res = con.cursor().execute(sql).fetchall()\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 10000 entries, 0 to 9999\n",
"Data columns (total 8 columns):\n",
"C_CUSTKEY 10000 non-null object\n",
"C_NAME 10000 non-null object\n",
"C_ADDRESS 10000 non-null object\n",
"C_NATIONKEY 10000 non-null object\n",
"C_PHONE 10000 non-null object\n",
"C_ACCTBAL 10000 non-null object\n",
"C_MKTSEGMENT 10000 non-null object\n",
"C_COMMENT 10000 non-null object\n",
"dtypes: object(8)\n",
"memory usage: 625.1+ KB\n"
]
}
],
"source": [
"# Run that same query, but this time use the read_sql method\n",
"# in the Pandas data frame object\n",
"#%%time\n",
"df = pd.read_sql(sql, con)\n",
"df.info()\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>C_CUSTKEY</th>\n",
" </tr>\n",
" <tr>\n",
" <th>C_MKTSEGMENT</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>AUTOMOBILE</td>\n",
" <td>2043</td>\n",
" </tr>\n",
" <tr>\n",
" <td>BUILDING</td>\n",
" <td>1938</td>\n",
" </tr>\n",
" <tr>\n",
" <td>FURNITURE</td>\n",
" <td>2060</td>\n",
" </tr>\n",
" <tr>\n",
" <td>HOUSEHOLD</td>\n",
" <td>1989</td>\n",
" </tr>\n",
" <tr>\n",
" <td>MACHINERY</td>\n",
" <td>1970</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" C_CUSTKEY\n",
"C_MKTSEGMENT \n",
"AUTOMOBILE 2043\n",
"BUILDING 1938\n",
"FURNITURE 2060\n",
"HOUSEHOLD 1989\n",
"MACHINERY 1970"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get a count of distinct customers by market segment\n",
"df.groupby('C_MKTSEGMENT')[['C_CUSTKEY']].count()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"C_CUSTKEY False\n",
"C_NAME False\n",
"C_ADDRESS False\n",
"C_NATIONKEY False\n",
"C_PHONE False\n",
"C_ACCTBAL False\n",
"C_MKTSEGMENT False\n",
"C_COMMENT False\n",
"dtype: bool"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check to see if any of the columns have null values\n",
"pd.isnull(df).any()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"list"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(res)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"('5050001', 'Customer#005050001', 'h2Q2lfB QpSuOt32ZDV7S8RsTKgedv4w9s9wa', '18', '28-680-716-8960', '4571.61', 'AUTOMOBILE', 'e thinly bold ideas. carefully final pinto beans cajole across')\n"
]
}
],
"source": [
"print (res[0])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"AUTOMOBILE has occured 1974 times\n",
"BUILDING has occured 1964 times\n",
"MACHINERY has occured 1989 times\n",
"HOUSEHOLD has occured 2025 times\n",
"FURNITURE has occured 2048 times\n"
]
}
],
"source": [
"unique_cust_key = []\n",
"z = []\n",
"for x in res:\n",
" z.append((x[0],x[6]))\n",
"\n",
"for x in z:\n",
" if x not in unique_cust_key:\n",
" unique_cust_key.append(x)\n",
" \n",
"# initailize a null list \n",
"unique_list = []\n",
"\n",
"# traverse for all elements \n",
"for x in unique_cust_key:\n",
" # check if exists in unique_list or not \n",
" if x[1] not in unique_list:\n",
" unique_list.append(x[1])\n",
" \n",
"def countX(lst, x):\n",
" count = 0\n",
" for y in lst:\n",
" if (y[1] == x):\n",
" count = count + 1\n",
" return count\n",
"\n",
"for a in unique_list:\n",
" print('{} has occured {} times'.format(a, countX(unique_cust_key, a))) \n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading

0 comments on commit f51b2da

Please sign in to comment.