Skip to content

train XGBoostClassifier on Iris Dataset, convert to onnx / ort model, deploy on Android App (using Java), Android Native C++, Linux C++, etc.

License

Notifications You must be signed in to change notification settings

ShangjinTang/onnxruntime-inference

Repository files navigation

README

This project is under Apache 2.0 License.

App Inference Demo

prediction sample

Train

Directory: xgboost_train.

Without bazel

Just run train.ipynb.

Using bazel

  1. Install bazelisk.

You can install bazelisk in multiple ways, including:

  • npm install -g @bazel/bazelisk
  • using a binary release for Linux, macOS, or Windows
  • using Homebrew on macOS
  • by compiling from source using Go: `go get github.com/bazelbuild/bazelisk
  1. Run XGBoostClassifier with Iris dataset:
cd ./xgboost_train
bazelisk run :train

The output model is under xgboost_train/bazel-xgboost_train.

  1. Convert (.onnx to .ort) (optional)

If you need to use .ort model, you can convert with:

python -m onnxruntime.tools.convert_onnx_models_to_ort <onnx model file or dir>

But for xgboost model, .ort model is 2~3 times larger than original .onnx model.

Inference (on Android)

Directory: onnx_inference.

Install Android Studio and run the APK.

Q&A

Why do not deploy with XGBoost4j?

The Android architecture is not official supported in XGBoost4j.

Why do not convert onnx to TensorFlow and deploy with TFLite?

Because it's impossible as TensorFlow do not implement the XGBoost backend. If you convert onnx to tf model, you would get this convertion error:

Convert code:

import onnx
from onnx_tf.backend import prepare

# Load the ONNX model
onnx_model = onnx.load("xgbc_iris.onnx")

# Convert the ONNX model to TensorFlow format
tf_model = prepare(onnx_model)

# Save the TensorFlow model
tf_model.export_graph("xgbc_iris.tf")

Convert result (ERROR):

Error: "BackendIsNotSupposedToImplementIt: TreeEnsembleClassifier is not implemented."

About

train XGBoostClassifier on Iris Dataset, convert to onnx / ort model, deploy on Android App (using Java), Android Native C++, Linux C++, etc.

Resources

License

Stars

Watchers

Forks

Releases

No releases published