Skip to content

Commit

Permalink
Added nhst reflection topic
Browse files Browse the repository at this point in the history
  • Loading branch information
Sharon Klinkenberg authored and Sharon Klinkenberg committed Feb 22, 2024
1 parent 4687d93 commit 191382d
Show file tree
Hide file tree
Showing 7 changed files with 62 additions and 5 deletions.
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,9 @@ format:
output-ext: slide.html
---

```{r child="../../../../topics/nhst_reflection/nhst_reflection.qmd", eval=TRUE}
```

```{r child="../../../../topics/confidence_interval/confidence_interval.qmd", eval=TRUE}
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -362,6 +362,34 @@ <h1 class="title">Alternatives to NHST</h1>
<p class="date">2024-02-26</p>
</section>
<section>
<section id="the-problem-with-p-values" class="title-slide slide level1 center" data-background-image="Sad-P.webp" data-background-color="black">
<h1>The problem with P-values</h1>

</section>
<section id="there-is-no-problem" class="slide level2">
<h2>There is no problem</h2>
<p>The problem with P-values is that they are often <strong>misunderstood</strong> and <strong>misinterpreted</strong>. The P-value is the probability of observing a test statistic as or more extreme as the one obtained, given that the null hypothesis is true. It is not the probability that the null hypothesis is true. The P-value is not a measure of the strength of the evidence against the null hypothesis.</p>
<blockquote>
<p>The mis interpretation is the problem, and not adhering to the Nayman-Pearson framework</p>
</blockquote>
</section>
<section id="the-dance-of-the-p-value" class="slide level2">
<h2>The dance of the P-value</h2>
<ul>
<li><a href="https://youtu.be/ez4DgdurRPg?si=z7oIlKZx6iZjHNYH&amp;t=58">Should replication reveal the same <em>p</em>?</a></li>
<li><a href="https://youtu.be/ez4DgdurRPg?si=pN0QTEjARl_2mUO0&amp;t=235">What Power are you using</a></li>
<li><a href="https://youtu.be/ez4DgdurRPg?si=QQku6BKu4C-8BvhF&amp;t=396">Increasing the power</a></li>
<li><a href="https://youtu.be/ez4DgdurRPg?si=QPAcDeFmG-BUe8ZH&amp;t=480">Comparing CI’s to single point</a></li>
</ul>
</section>
<section id="h0-and-ha-distribution" class="slide level2 center">
<h2>H0 and HA distribution</h2>
<div class="cell" data-layout-align="center" data-screenshot.opts="{&quot;delay&quot;:5}">
<iframe src="https://sharon-klinkenberg.shinyapps.io/tiny-effects/?showcase=0" width="1200px" height="340px" data-external="1">
</iframe>
</div>
</section></section>
<section>
<section id="confidence-interval" class="title-slide slide level1 center">
<h1>Confidence Interval</h1>
<p>The confidence interval is a range of values that is likely to contain the true value of an unknown population parameter. The confidence interval is calculated from a given set of sample data. The confidence interval is used to express the uncertainty associated with a sample estimate of a population parameter.</p>
Expand All @@ -378,15 +406,15 @@ <h2>Standard Error</h2>
<li>Upperbound = <span class="math inline">\(\bar{x} + 1.96 \times SE\)</span></li>
</ul>
</section>
<section id="standard-error-1" class="slide level2">
<h2>Standard Error</h2>
<section id="plot-ci" class="slide level2">
<h2>Plot CI</h2>

<img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-3-1.png" width="960" class="r-stretch"></section>
<img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-4-1.png" width="960" class="r-stretch"></section>
<section id="out-of-100-samples" class="slide level2">
<h2>5 out of 100 samples</h2>
<div class="cell">
<div class="cell-output-display">
<p><img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-4-1.png" width="960" height="600"></p>
<p><img data-src="alternatives_nhst_files/figure-revealjs/unnamed-chunk-5-1.png" width="960" height="600"></p>
</div>
</div>
</section>
Expand Down Expand Up @@ -429,7 +457,7 @@ <h2>Researcher don’t know</h2>
<caption>Table 2 from <span class="citation" data-cites="hoekstra2014robust">Hoekstra et al. (<a href="#/references" role="doc-biblioref" onclick="">2014</a>)</span></caption>
<colgroup>
<col style="width: 9%">
<col style="width: 34%">
<col style="width: 35%">
<col style="width: 29%">
<col style="width: 26%">
</colgroup>
Expand Down Expand Up @@ -486,6 +514,9 @@ <h2>Researcher don’t know</h2>
</tr>
</tbody>
</table>
</section>
<section id="ci-compare-to-h0" class="slide level2">
<h2>CI compare to H0</h2>
<!-- Footer insert below -->
</section></section>
<section>
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified topics/.DS_Store
Binary file not shown.
23 changes: 23 additions & 0 deletions topics/nhst_reflection/nhst_reflection.qmd
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
# The problem with P-values {background-image="Sad-P.webp" background-color="black"}

## There is no problem

The problem with P-values is that they are often **misunderstood** and **misinterpreted**. The P-value is the probability of observing a sample statistic as or more extreme as the one obtained, given that the null hypothesis is true. It is **NOT** the probability that the null hypothesis is true. The P-value is **NOT** a measure of the strength of the evidence against the null hypothesis.

> The mis interpretation is the problem,
> and not adhering to the Nayman-Pearson framework
## The dance of the P-value

* [Should replication reveal the same _p_?](https://youtu.be/ez4DgdurRPg?si=z7oIlKZx6iZjHNYH&t=58)
* [What Power are you using](https://youtu.be/ez4DgdurRPg?si=pN0QTEjARl_2mUO0&t=235)
* [Increasing the power](https://youtu.be/ez4DgdurRPg?si=QQku6BKu4C-8BvhF&t=396)
* [Comparing CI's to single point](https://youtu.be/ez4DgdurRPg?si=QPAcDeFmG-BUe8ZH&t=480)

## H0 and HA distribution {.center}

```{r tiny-effects, fig.pos='H', fig.align='center', fig.cap="Any effect can be statistically significant.", echo=FALSE, screenshot.opts = list(delay = 5), dev="png", out.width="1200px"}
# Illustrate that even tiny effects can yield statistically significant test results if the sample is sufficiently large.
# Generate a normal distribution as hypothesized sampling distribution (M = 2.8, SE = SD / sqrt(N) = 0.6 / sqrt(10) = 0.2) with 2.5% of each tail area coloured. Add a vertical line with value for the sample average linked to a slider (range [2.82, 3.00] initial value 2.90). Add a sample size slider (range [10, 5,000], initial value 10), which is linked to the standard error of the normal curve. With slider for (assumed) true population mean and test power.
knitr::include_app("https://sharon-klinkenberg.shinyapps.io/tiny-effects/", height="340px")
```

0 comments on commit 191382d

Please sign in to comment.