Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

aes-kw: add fixed size methods #45

Merged
merged 1 commit into from
Nov 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions aes-kw/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,12 +71,20 @@ let wkey: [u8; 24] = hex!("1FA68B0A8112B447AEF34BD8FB5A7B829D3E862371D2CFE5");
let kw = KwAes128::new(&kw_key.into());

let mut buf = [0u8; 24];
kw.wrap(&key, &mut buf).unwrap();
kw.wrap_key(&key, &mut buf).unwrap();
assert_eq!(buf, wkey);

let mut buf = [0u8; 16];
kw.unwrap(&wkey, &mut buf).unwrap();
kw.unwrap_key(&wkey, &mut buf).unwrap();
assert_eq!(buf, key);

// If key size is known at compile time, you can use the fixed methods:
use aes_kw::cipher::consts::U16;

let wrapped_key = kw.wrap_fixed_key::<U16>(&key.into());
assert_eq!(wrapped_key, wkey);
let unwrapped_key = kw.unwrap_fixed_key::<U16>(&wrapped_key).unwrap();
assert_eq!(unwrapped_key, key);
```

## Minimum Supported Rust Version
Expand Down
6 changes: 3 additions & 3 deletions aes-kw/src/ctx.rs
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
use crate::{IV_LEN, SEMIBLOCK_SIZE};
use crate::IV_LEN;
use aes::cipher::{
typenum::U16, Block, BlockCipherDecBackend, BlockCipherDecClosure, BlockCipherEncBackend,
BlockCipherEncClosure, BlockSizeUser,
Expand All @@ -19,7 +19,7 @@ impl BlockCipherEncClosure for Ctx<'_> {
#[inline(always)]
fn call<B: BlockCipherEncBackend<BlockSize = U16>>(self, backend: &B) {
for j in 0..=5 {
for (i, chunk) in self.buf.chunks_mut(SEMIBLOCK_SIZE).skip(1).enumerate() {
for (i, chunk) in self.buf.chunks_mut(IV_LEN).skip(1).enumerate() {
// A | R[i]
self.block[IV_LEN..].copy_from_slice(chunk);
// B = AES(K, ..)
Expand All @@ -43,7 +43,7 @@ impl BlockCipherDecClosure for Ctx<'_> {
#[inline(always)]
fn call<B: BlockCipherDecBackend<BlockSize = U16>>(self, backend: &B) {
for j in (0..=5).rev() {
for (i, chunk) in self.buf.chunks_mut(SEMIBLOCK_SIZE).enumerate().rev() {
for (i, chunk) in self.buf.chunks_mut(IV_LEN).enumerate().rev() {
// A ^ t
let t = (self.blocks_len * j + (i + 1)) as u64;
for (ai, ti) in self.block[..IV_LEN].iter_mut().zip(&t.to_be_bytes()) {
Expand Down
18 changes: 14 additions & 4 deletions aes-kw/src/error.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,15 +19,25 @@ pub enum Error {
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Error::InvalidDataSize => write!(f, "data must be a multiple of 64 bits for AES-KW and less than 2^32 bytes for AES-KWP"),
Error::InvalidDataSize => f.write_str("data must be a multiple of 64 bits for AES-KW and less than 2^32 bytes for AES-KWP"),
Error::InvalidOutputSize { expected_len: expected } => {
write!(f, "invalid output buffer size: expected {}", expected)
}
Error::IntegrityCheckFailed => {
write!(f, "integrity check failed")
}
Error::IntegrityCheckFailed => f.write_str("integrity check failed"),
}
}
}

impl core::error::Error for Error {}

/// Error that indicates integrity check failure.
#[derive(Clone, Copy, Debug)]
pub struct IntegrityCheckFailed;

impl fmt::Display for IntegrityCheckFailed {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("integrity check failed")
}
}

impl core::error::Error for IntegrityCheckFailed {}
172 changes: 130 additions & 42 deletions aes-kw/src/kw.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,11 @@
use crate::{ctx::Ctx, Error, IV_LEN, SEMIBLOCK_SIZE};
use core::ops::{Add, Rem};

use crate::{ctx::Ctx, error::IntegrityCheckFailed, Error, IvLen, IV_LEN};
use aes::cipher::{
array::ArraySize,
crypto_common::{InnerInit, InnerUser},
typenum::U16,
Block, BlockCipherDecrypt, BlockCipherEncrypt,
typenum::{Mod, NonZero, Sum, Zero, U16},
Array, Block, BlockCipherDecrypt, BlockCipherEncrypt,
};

/// Default Initial Value for AES-KW as defined in RFC3394 § 2.2.3.1.
Expand All @@ -23,6 +26,9 @@ use aes::cipher::{
/// ```
const IV: [u8; IV_LEN] = [0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6];

/// Type alias representing wrapped key roughly equivalent to `[u8; N + IV_LEN]`.
pub type KwWrappedKey<N> = Array<u8, Sum<N, IvLen>>;

/// AES Key Wrapper (KW), as defined in [RFC 3394].
///
/// [RFC 3394]: https://www.rfc-editor.org/rfc/rfc3394.txt
Expand All @@ -43,24 +49,9 @@ impl<C> InnerInit for AesKw<C> {
}

impl<C: BlockCipherEncrypt<BlockSize = U16>> AesKw<C> {
/// Wrap `data` and write result to `buf`.
///
/// Returns slice which points to `buf` and contains wrapped data.
///
/// Length of `data` must be multiple of [`SEMIBLOCK_SIZE`] and bigger than zero.
/// Length of `buf` must be bigger or equal to `data.len() + IV_LEN`.
#[inline]
pub fn wrap<'a>(&self, data: &[u8], buf: &'a mut [u8]) -> Result<&'a [u8], Error> {
let blocks_len = data.len() / SEMIBLOCK_SIZE;
let blocks_rem = data.len() % SEMIBLOCK_SIZE;
if blocks_rem != 0 {
return Err(Error::InvalidDataSize);
}

let expected_len = data.len() + IV_LEN;
let buf = buf
.get_mut(..expected_len)
.ok_or(Error::InvalidOutputSize { expected_len })?;
/// Wrap key into `buf` assuming that it has correct length.
fn wrap_key_trusted(&self, key: &[u8], buf: &mut [u8]) {
let blocks_len = key.len() / IV_LEN;

// 1) Initialize variables

Expand All @@ -69,7 +60,7 @@ impl<C: BlockCipherEncrypt<BlockSize = U16>> AesKw<C> {
block[..IV_LEN].copy_from_slice(&IV);

// 2) Calculate intermediate values
buf[IV_LEN..].copy_from_slice(data);
buf[IV_LEN..].copy_from_slice(key);

self.cipher.encrypt_with_backend(Ctx {
blocks_len,
Expand All @@ -79,42 +70,79 @@ impl<C: BlockCipherEncrypt<BlockSize = U16>> AesKw<C> {

// 3) Output the results
buf[..IV_LEN].copy_from_slice(&block[..IV_LEN]);

Ok(buf)
}
}

impl<C: BlockCipherDecrypt<BlockSize = U16>> AesKw<C> {
/// Unwrap `data` and write result to `buf`.
/// Wrap `key` and write result to `buf`.
///
/// Returns slice which points to `buf` and contains unwrapped data.
/// Returns slice which points to `buf` and contains wrapped data.
///
/// Length of `data` must be multiple of [`SEMIBLOCK_SIZE`] and bigger than zero.
/// Length of `buf` must be bigger or equal to `data.len()`.
/// Length of `data` must be multiple of [`IV_LEN`] and bigger than zero.
/// Length of `buf` must be bigger or equal to `data.len() + IV_LEN`.
#[inline]
pub fn unwrap<'a>(&self, data: &[u8], buf: &'a mut [u8]) -> Result<&'a [u8], Error> {
let blocks_len = data.len() / SEMIBLOCK_SIZE;
let blocks_rem = data.len() % SEMIBLOCK_SIZE;
if blocks_rem != 0 || blocks_len < 1 {
pub fn wrap_key<'a>(&self, key: &[u8], buf: &'a mut [u8]) -> Result<&'a [u8], Error> {
let blocks_rem = key.len() % IV_LEN;
if blocks_rem != 0 {
return Err(Error::InvalidDataSize);
}

// 0) Prepare inputs

let blocks_len = blocks_len - 1;

let expected_len = blocks_len * SEMIBLOCK_SIZE;
let expected_len = key.len() + IV_LEN;
let buf = buf
.get_mut(..expected_len)
.ok_or(Error::InvalidOutputSize { expected_len })?;

self.wrap_key_trusted(key, buf);

Ok(buf)
}

/// Wrap fixed-size key `key` and return wrapped key.
///
/// This method is roughly equivalent to:
/// ```ignore
/// const fn check_key_size(n: usize) -> usize {
/// assert!(n != 0 && n % IV_LEN == 0);
/// 0
/// }
///
/// pub fn wrap_fixed_key<const N: usize>(
/// &self,
/// key: &[u8; N],
/// ) -> [u8; N + IV_LEN]
/// where
/// [(); check_key_size(N)]: Sized,
/// { ... }
/// ```
/// but uses [`hybrid_array::Array`][Array] instead of built-in arrays
/// to work around current limitations of the const generics system.
#[inline]
pub fn wrap_fixed_key<N>(&self, key: &Array<u8, N>) -> KwWrappedKey<N>
where
N: ArraySize + NonZero + Add<IvLen> + Rem<IvLen>,
Sum<N, IvLen>: ArraySize,
Mod<N, IvLen>: Zero,
{
let mut buf = KwWrappedKey::<N>::default();
self.wrap_key_trusted(key, &mut buf);
buf
}
}

impl<C: BlockCipherDecrypt<BlockSize = U16>> AesKw<C> {
/// Unwrap key into `buf` assuming that it has correct length.
fn unwrap_key_trusted<'a>(
&self,
wkey: &[u8],
buf: &'a mut [u8],
) -> Result<&'a [u8], IntegrityCheckFailed> {
let blocks_len = buf.len() / IV_LEN;

// 1) Initialize variables

let block = &mut Block::<C>::default();
block[..IV_LEN].copy_from_slice(&data[..IV_LEN]);
block[..IV_LEN].copy_from_slice(&wkey[..IV_LEN]);

// for i = 1 to n: R[i] = C[i]
buf.copy_from_slice(&data[IV_LEN..]);
buf.copy_from_slice(&wkey[IV_LEN..]);

// 2) Calculate intermediate values

Expand All @@ -132,7 +160,67 @@ impl<C: BlockCipherDecrypt<BlockSize = U16>> AesKw<C> {
Ok(buf)
} else {
buf.fill(0);
Err(Error::IntegrityCheckFailed)
Err(IntegrityCheckFailed)
}
}

/// Unwrap `data` and write result to `buf`.
///
/// Returns slice which points to `buf` and contains unwrapped data.
///
/// Length of `data` must be multiple of [`IV_LEN`] and bigger than zero.
/// Length of `buf` must be bigger or equal to `data.len()`.
#[inline]
pub fn unwrap_key<'a>(&self, wkey: &[u8], buf: &'a mut [u8]) -> Result<&'a [u8], Error> {
let blocks_len = wkey.len() / IV_LEN;
let blocks_rem = wkey.len() % IV_LEN;
if blocks_rem != 0 || blocks_len < 1 {
return Err(Error::InvalidDataSize);
}

let blocks_len = blocks_len - 1;
let expected_len = blocks_len * IV_LEN;
let buf = buf
.get_mut(..expected_len)
.ok_or(Error::InvalidOutputSize { expected_len })?;

self.unwrap_key_trusted(wkey, buf)
.map_err(|_| Error::IntegrityCheckFailed)?;

Ok(buf)
}

/// Unwrap key in `data` and return unwrapped key.
///
/// This method is roughly equivalent to:
/// ```ignore
/// const fn check_key_size(n: usize) -> usize {
/// assert!(n != 0 && n % IV_LEN == 0);
/// 0
/// }
///
/// fn unwrap_fixed_key<const N: usize>(
/// &self,
/// data: &[u8; N + IV_LEN],
/// ) -> [u8; N]
/// where
/// [(); check_key_size(N)]: Sized,
/// { ... }
/// ```
/// but uses [`hybrid_array::Array`][Array] instead of built-in arrays
/// to work around current limitations of the const generics system.
#[inline]
pub fn unwrap_fixed_key<N>(
&self,
wkey: &KwWrappedKey<N>,
) -> Result<Array<u8, N>, IntegrityCheckFailed>
where
N: ArraySize + NonZero + Add<IvLen> + Rem<IvLen>,
Sum<N, IvLen>: ArraySize,
Mod<N, IvLen>: Zero,
{
let mut buf = Array::<u8, N>::default();
self.unwrap_key_trusted(wkey, &mut buf)?;
Ok(buf)
}
}
Loading
Loading