Skip to content

RavenKiller/TACEmbodied

Repository files navigation

Learning Depth Representation from RGB-D Videos by Time-Aware Contrastive Pre-training

[paper] [pre-training code]

This repository only contains embodied experiments.

Preparation

Simulated environments

run_baseline.py is for baselines; run.py is for baselines+TAC; VLN-CE/run.py is for VLN-CE agents.

PointNav, ObjectNav, EQA and Rearrangement require Habitat 2.4; VLN-CE require Habitat 1.7. To setup the environments, please refer to Habitat-lab and VLN-CE.

TAC weight

Download the TAC pre-trained depth encoder from here. Put it into data/checkpoints/TAC/best.pth.

Experiments

PointNav

Train

python run.py --config-name=pointnav/ppo_pointnav_gibson.yaml habitat_baselines.evaluate=False

Evaluate

python run.py --config-name=pointnav/ppo_pointnav_gibson.yaml habitat_baselines.evaluate=True

ObjectNav

Train

python run.py --config-name=objectnav/ddppo_objectnav_hm3d.yaml habitat_baselines.evaluate=False

Evaluate

python run.py --config-name=objectnav/ddppo_objectnav_hm3d.yaml habitat_baselines.evaluate=True

VLN-CE

Train

cd VLN-CE
python run.py --run-type train --exp-config vlnce_baselines/config/r2r_baselines/cma_pm.yaml

Evaluate

cd VLN-CE
python run.py --run-type eval --exp-config vlnce_baselines/config/r2r_baselines/cma_pm.yaml

EQA

Train

python run.py --config-name=eqa/il_pacman_nav.yaml habitat_baselines.evaluate=False
python run.py --config-name=eqa/il_vqa.yaml habitat_baselines.evaluate=False

Evaluate

python run.py --config-name=eqa/il_pacman_nav.yaml habitat_baselines.evaluate=True
python run.py --config-name=eqa/il_vqa.yaml habitat_baselines.evaluate=True

Rearrangement

Train

sh train_skills.sh

Evaluate

python run.py --config-name=rearrange/rl_hierarchical_fixed.yaml habitat_baselines.evaluate=True

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published