-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Updating TF pets training example (#179)
* Add tf_pets training example * Adding dockerfile and readme changes * Resolving review comments * Resolving review comments --------- Co-authored-by: SundarRajan98 <[email protected]>
- Loading branch information
1 parent
e4a57b7
commit bda170d
Showing
8 changed files
with
583 additions
and
156 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
r"""Convert the Oxford pet dataset to TFRecord for object_detection. | ||
See: O. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar | ||
Cats and Dogs | ||
IEEE Conference on Computer Vision and Pattern Recognition, 2012 | ||
http://www.robots.ox.ac.uk/~vgg/data/pets/ | ||
Example usage: | ||
python object_detection/dataset_tools/create_pet_tf_record.py \ | ||
--data_dir=/home/user/pet \ | ||
--output_dir=/home/user/pet/output | ||
""" | ||
|
||
import hashlib | ||
import io | ||
import logging | ||
import os | ||
import random | ||
import re | ||
|
||
import contextlib2 | ||
from lxml import etree | ||
import PIL.Image | ||
from six.moves import range | ||
import tensorflow.compat.v1 as tf | ||
|
||
flags = tf.app.flags | ||
flags.DEFINE_string('data_dir', '', 'Root directory to raw pet dataset.') | ||
flags.DEFINE_string('output_dir', '', 'Path to directory to output TFRecords.') | ||
flags.DEFINE_string('label_map_path', 'pet_label_map.pbtxt', | ||
'Path to label map proto') | ||
flags.DEFINE_integer('num_shards', 10, 'Number of TFRecord shards') | ||
|
||
FLAGS = flags.FLAGS | ||
|
||
|
||
def open_sharded_output_tfrecords(exit_stack, base_path, num_shards): | ||
"""Opens all TFRecord shards for writing and adds them to an exit stack. | ||
Args: | ||
exit_stack: A context2.ExitStack used to automatically closed the TFRecords | ||
opened in this function. | ||
base_path: The base path for all shards | ||
num_shards: The number of shards | ||
Returns: | ||
The list of opened TFRecords. Position k in the list corresponds to shard k. | ||
""" | ||
tf_record_output_filenames = [ | ||
'{}-{:05d}-of-{:05d}'.format(base_path, idx, num_shards) | ||
for idx in range(num_shards) | ||
] | ||
|
||
tfrecords = [ | ||
exit_stack.enter_context(tf.python_io.TFRecordWriter(file_name)) | ||
for file_name in tf_record_output_filenames | ||
] | ||
|
||
return tfrecords | ||
|
||
|
||
def int64_feature(value): | ||
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) | ||
|
||
|
||
def int64_list_feature(value): | ||
return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) | ||
|
||
|
||
def bytes_feature(value): | ||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) | ||
|
||
|
||
def bytes_list_feature(value): | ||
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) | ||
|
||
|
||
def float_feature(value): | ||
return tf.train.Feature(float_list=tf.train.FloatList(value=[value])) | ||
|
||
|
||
def float_list_feature(value): | ||
return tf.train.Feature(float_list=tf.train.FloatList(value=value)) | ||
|
||
|
||
def get_class_name_from_filename(file_name): | ||
"""Gets the class name from a file. | ||
Args: | ||
file_name: The file name to get the class name from. | ||
ie. "american_pit_bull_terrier_105.jpg" | ||
Returns: | ||
A string of the class name. | ||
""" | ||
match = re.match(r'([A-Za-z_]+)(_[0-9]+\.jpg)', file_name, re.I) | ||
return match.groups()[0] | ||
|
||
|
||
def read_examples_list(path): | ||
"""Read list of training or validation examples. | ||
The file is assumed to contain a single example per line where the first | ||
token in the line is an identifier that allows us to find the image and | ||
annotation xml for that example. | ||
For example, the line: | ||
xyz 3 | ||
would allow us to find files xyz.jpg and xyz.xml (the 3 would be ignored). | ||
Args: | ||
path: absolute path to examples list file. | ||
Returns: | ||
list of example identifiers (strings). | ||
""" | ||
with tf.gfile.GFile(path) as fid: | ||
lines = fid.readlines() | ||
return [line.strip().split(' ')[0] for line in lines] | ||
|
||
|
||
def recursive_parse_xml_to_dict(xml): | ||
"""Recursively parses XML contents to python dict. | ||
We assume that `object` tags are the only ones that can appear | ||
multiple times at the same level of a tree. | ||
Args: | ||
xml: xml tree obtained by parsing XML file contents using lxml.etree | ||
Returns: | ||
Python dictionary holding XML contents. | ||
""" | ||
if not xml: | ||
return {xml.tag: xml.text} | ||
result = {} | ||
for child in xml: | ||
child_result = recursive_parse_xml_to_dict(child) | ||
if child.tag != 'object': | ||
result[child.tag] = child_result[child.tag] | ||
else: | ||
if child.tag not in result: | ||
result[child.tag] = [] | ||
result[child.tag].append(child_result[child.tag]) | ||
return {xml.tag: result} | ||
|
||
|
||
def dict_to_tf_example(data, | ||
mask_path, | ||
label_map_dict, | ||
image_subdirectory): | ||
"""Convert XML derived dict to tf.Example proto. | ||
Notice that this function normalizes the bounding box coordinates provided | ||
by the raw data. | ||
Args: | ||
data: dict holding PASCAL XML fields for a single image (obtained by | ||
running recursive_parse_xml_to_dict) | ||
mask_path: String path to PNG encoded mask. | ||
label_map_dict: A map from string label names to integers ids. | ||
image_subdirectory: String specifying subdirectory within the | ||
Pascal dataset directory holding the actual image data. | ||
Returns: | ||
example: The converted tf.Example. | ||
Raises: | ||
ValueError: if the image pointed to by data['filename'] is not a valid JPEG | ||
""" | ||
img_path = os.path.join(image_subdirectory, data['filename']) | ||
with tf.gfile.GFile(img_path, 'rb') as fid: | ||
encoded_jpg = fid.read() | ||
encoded_jpg_io = io.BytesIO(encoded_jpg) | ||
image = PIL.Image.open(encoded_jpg_io) | ||
if image.format != 'JPEG': | ||
raise ValueError('Image format not JPEG') | ||
key = hashlib.sha256(encoded_jpg).hexdigest() | ||
|
||
width = int(data['size']['width']) | ||
height = int(data['size']['height']) | ||
|
||
classes = [] | ||
classes_text = [] | ||
|
||
if 'object' in data: | ||
class_name = get_class_name_from_filename(data['filename']) | ||
classes_text.append(class_name.encode('utf8')) | ||
classes.append(label_map_dict[class_name]) | ||
|
||
feature_dict = { | ||
'image/height': int64_feature(height), | ||
'image/width': int64_feature(width), | ||
'image/filename': bytes_feature( | ||
data['filename'].encode('utf8')), | ||
'image/source_id': bytes_feature( | ||
data['filename'].encode('utf8')), | ||
'image/key/sha256': bytes_feature(key.encode('utf8')), | ||
'image/encoded': bytes_feature(encoded_jpg), | ||
'image/format': bytes_feature('jpeg'.encode('utf8')), | ||
'image/object/class/text': bytes_list_feature(classes_text), | ||
'image/object/class/label': int64_list_feature(classes) | ||
} | ||
example = tf.train.Example( | ||
features=tf.train.Features(feature=feature_dict)) | ||
return example | ||
|
||
|
||
def create_tf_record(output_filename, | ||
num_shards, | ||
label_map_dict, | ||
annotations_dir, | ||
image_dir, | ||
examples): | ||
"""Creates a TFRecord file from examples. | ||
Args: | ||
output_filename: Path to where output file is saved. | ||
num_shards: Number of shards for output file. | ||
label_map_dict: The label map dictionary. | ||
annotations_dir: Directory where annotation files are stored. | ||
image_dir: Directory where image files are stored. | ||
examples: Examples to parse and save to tf record. | ||
""" | ||
with contextlib2.ExitStack() as tf_record_close_stack: | ||
output_tfrecords = open_sharded_output_tfrecords( | ||
tf_record_close_stack, output_filename, num_shards) | ||
for idx, example in enumerate(examples): | ||
if idx % 100 == 0: | ||
logging.info('On image %d of %d', idx, len(examples)) | ||
xml_path = os.path.join(annotations_dir, 'xmls', example + '.xml') | ||
mask_path = os.path.join( | ||
annotations_dir, 'trimaps', example + '.png') | ||
|
||
if not os.path.exists(xml_path): | ||
logging.warning( | ||
'Could not find %s, ignoring example.', xml_path) | ||
continue | ||
with tf.gfile.GFile(xml_path, 'r') as fid: | ||
xml_str = fid.read() | ||
xml = etree.fromstring(xml_str) | ||
data = recursive_parse_xml_to_dict(xml)['annotation'] | ||
|
||
try: | ||
tf_example = dict_to_tf_example( | ||
data, | ||
mask_path, | ||
label_map_dict, | ||
image_dir) | ||
if tf_example: | ||
shard_idx = idx % num_shards | ||
output_tfrecords[shard_idx].write( | ||
tf_example.SerializeToString()) | ||
except ValueError: | ||
logging.warning('Invalid example: %s, ignoring.', xml_path) | ||
|
||
|
||
def main(_): | ||
data_dir = FLAGS.data_dir | ||
label_map_dict = {'Abyssinian': 1, 'american_bulldog': 2, 'american_pit_bull_terrier': 3, 'basset_hound': 4, 'beagle': 5, 'Bengal': 6, 'Birman': 7, 'Bombay': 8, 'boxer': 9, 'British_Shorthair': 10, 'chihuahua': 11, 'Egyptian_Mau': 12, 'english_cocker_spaniel': 13, 'english_setter': 14, 'german_shorthaired': 15, 'great_pyrenees': 16, 'havanese': 17, 'japanese_chin': 18, | ||
'keeshond': 19, 'leonberger': 20, 'Maine_Coon': 21, 'miniature_pinscher': 22, 'newfoundland': 23, 'Persian': 24, 'pomeranian': 25, 'pug': 26, 'Ragdoll': 27, 'Russian_Blue': 28, 'saint_bernard': 29, 'samoyed': 30, 'scottish_terrier': 31, 'shiba_inu': 32, 'Siamese': 33, 'Sphynx': 34, 'staffordshire_bull_terrier': 35, 'wheaten_terrier': 36, 'yorkshire_terrier': 37} | ||
logging.info('Reading from Pet dataset.') | ||
image_dir = os.path.join(data_dir, 'images') | ||
annotations_dir = os.path.join(data_dir, 'annotations') | ||
examples_path = os.path.join(annotations_dir, 'trainval.txt') | ||
examples_list = read_examples_list(examples_path) | ||
|
||
# Test images are not included in the downloaded data set, so we shall perform | ||
# our own split. | ||
random.seed(42) | ||
random.shuffle(examples_list) | ||
num_examples = len(examples_list) | ||
num_train = int(0.7 * num_examples) | ||
train_examples = examples_list[:num_train] | ||
val_examples = examples_list[num_train:] | ||
logging.info('%d training and %d validation examples.', | ||
len(train_examples), len(val_examples)) | ||
|
||
train_output_path = os.path.join( | ||
FLAGS.output_dir, 'pet_faces_train.record') | ||
val_output_path = os.path.join(FLAGS.output_dir, 'pet_faces_val.record') | ||
create_tf_record( | ||
train_output_path, | ||
FLAGS.num_shards, | ||
label_map_dict, | ||
annotations_dir, | ||
image_dir, | ||
train_examples) | ||
create_tf_record( | ||
val_output_path, | ||
FLAGS.num_shards, | ||
label_map_dict, | ||
annotations_dir, | ||
image_dir, | ||
val_examples) | ||
|
||
|
||
if __name__ == '__main__': | ||
tf.app.run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.