Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for the dilations attribute to Pooling ops #2105

Merged
merged 21 commits into from
Nov 22, 2023
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
Show all changes
21 commits
Select commit Hold shift + click to select a range
96971e3
Introduce dilations attribute to pooling operators reference
mirza-halilcevic Aug 22, 2023
f666861
Make some code styling improvements.
mirza-halilcevic Aug 22, 2023
ceb0325
Add dilations to existing pooling tests
attila-dusnoki-htec Aug 25, 2023
31111b7
Fix missing dilations from pooling throw message
attila-dusnoki-htec Aug 25, 2023
59a7768
Fix dilation calc logic for pooling
attila-dusnoki-htec Aug 25, 2023
6f097e8
Add pooling dilation shape tests
attila-dusnoki-htec Aug 25, 2023
5d92ec1
Add pooling dilation ref tests
attila-dusnoki-htec Aug 28, 2023
e3aaae0
Add pooling dilation onnx tests
attila-dusnoki-htec Aug 28, 2023
e5f06f5
Add throw for GPU non-default dilations
attila-dusnoki-htec Aug 28, 2023
5e8cdce
Merge branch 'develop' into pooling_dilations
attila-dusnoki-htec Sep 1, 2023
53a10bc
format.py fixes
attila-dusnoki-htec Sep 1, 2023
8ddbfa5
Add missed dilations
attila-dusnoki-htec Sep 4, 2023
f361d5c
Add dilated pooling rewrite
attila-dusnoki-htec Sep 7, 2023
d639171
Merge remote-tracking branch 'upstream/develop' into pooling_dilations
attila-dusnoki-htec Sep 8, 2023
3426ebf
Merge remote-tracking branch 'upstream/develop' into pooling_dilations
attila-dusnoki-htec Sep 12, 2023
6e43d0c
Address review comments
attila-dusnoki-htec Sep 19, 2023
d8de555
Merge remote-tracking branch 'upstream/develop' into pooling_dilations
attila-dusnoki-htec Oct 3, 2023
1e76547
Merge remote-tracking branch 'upstream/develop' into pooling_dilations
attila-dusnoki-htec Oct 11, 2023
195cebd
Merge remote-tracking branch 'upstream/develop' into pooling_dilations
attila-dusnoki-htec Oct 20, 2023
e3fcc5a
Merge branch 'develop' into pooling_dilations
causten Nov 8, 2023
1e83d83
Merge branch 'develop' into pooling_dilations
causten Nov 22, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 40 additions & 11 deletions src/include/migraphx/op/pooling.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,8 @@ struct pooling
// 2 smaller than the input tensor rank (NCHW layout)
std::vector<std::size_t> lengths = {1, 1};

// Dilations are not supported at this time.
// Spacing between the elements of the pooling kernel. Must be the same ndim as lengths.
std::vector<std::size_t> dilations = {1, 1};

// ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel.
Expand Down Expand Up @@ -99,6 +100,7 @@ struct pooling
f(self.padding_mode, "padding_mode"),
f(self.stride, "stride"),
f(self.lengths, "lengths"),
f(self.dilations, "dilations"),
f(self.ceil_mode, "ceil_mode"),
f(self.lp_order, "lp_order"),
f(self.dyn_global, "dyn_global"));
Expand All @@ -112,14 +114,17 @@ struct pooling
return;
if((padding_mode != default_ and padding.size() != stride.size() and
(padding.size()) != stride.size() * 2) or
stride.size() != lengths.size())
stride.size() != lengths.size() or dilations.size() != lengths.size())
{
MIGRAPHX_THROW("POOLING: inconsistent attribute sizes");
}
if(std::any_of(lengths.begin(), lengths.end(), [&](auto i) { return (i == 0); }) or
std::any_of(stride.begin(), stride.end(), [&](auto i) { return (i == 0); }))

const auto is_zero = [](auto el) { return el == 0; };
if(std::any_of(lengths.begin(), lengths.end(), is_zero) or
std::any_of(stride.begin(), stride.end(), is_zero) or
std::any_of(dilations.begin(), dilations.end(), is_zero))
CharlieL7 marked this conversation as resolved.
Show resolved Hide resolved
{
MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride");
MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride or dilations");
}

// TODO: update lowering to run the reference
Expand All @@ -142,6 +147,11 @@ struct pooling

value attributes() const { return {{"normalize_padding", "padding"}}; }

inline std::size_t dilate_dim(std::size_t dim, std::size_t dilation) const
{
return 1 + dilation * (dim - 1);
}

std::vector<std::size_t> calc_spatial_dim_out(const std::vector<std::size_t>& input_lens,
std::size_t kdims) const
{
Expand All @@ -151,8 +161,9 @@ struct pooling
std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims];
std::size_t dilated_length = dilate_dim(lengths[i], dilations[i]);
std::size_t dim_size;
if(input_lens[i + 2] + padding_factor < lengths[i])
if(input_lens[i + 2] + padding_factor < dilated_length)
{
if(padding_mode == default_)
MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size");
Expand All @@ -162,7 +173,7 @@ struct pooling
}
else
{
dim_size = input_lens[i + 2] + padding_factor - lengths[i];
dim_size = input_lens[i + 2] + padding_factor - dilated_length;
}
std::size_t len =
(ceil_mode)
Expand Down Expand Up @@ -331,6 +342,7 @@ struct pooling
int start = static_cast<int>(idx_o[dim] * stride[d_2]) -
static_cast<int>(padding_vals[d_2]);
int end;
std::size_t dilated_kernel_dim = dilate_dim(kernel_dims[d_2], dilations[d_2]);
// NOLINT
if(count_include_pad and ceil_mode and (mode != pooling_mode::max))
{
Expand All @@ -340,15 +352,14 @@ struct pooling
// padding. Clip out-of-bounds indexes but not padding.

// Check if this kernel extends beyond the padding at end of dimension
end = std::min(start + kernel_dims[d_2],
end = std::min(start + dilated_kernel_dim,
in_lens[dim] + static_cast<int>(padding_vals[d_2]));
}
else
{
// In non-ceiling mode, when
// count_include_pad is false, or for max pooling, clip off padding.
end = std::min(start + kernel_dims[d_2], in_lens[dim]);
start = std::max(start, 0);
end = std::min(start + dilated_kernel_dim, in_lens[dim]);
}
win_start.push_back(start);
if(end < start)
Expand All @@ -366,6 +377,16 @@ struct pooling

// for each element in the window...
shape_for_each(win_shape, [&](const auto& idx_w) {
// Skip elements that belong to the dilated area
for(size_t axis = 0; axis < idx_w.size(); ++axis)
{
if(idx_w[axis] % dilations[axis])
{
pool_size -= 1;
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

pool_size should be adjusted before calling shape_for_each.

return;
}
}

// the coordinates of this element
auto idx = idx_o;

Expand All @@ -390,7 +411,15 @@ struct pooling
// this is a padding element. Padding locations
// don't contribute to average or max pooling total but can play in
// lpnorm pooling.
output_val = op(output_val, 0);
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This should just be output_val = op(output_val, op.template init<Type>());. Using 0 is a bug.

if(mode == pooling_mode::lpnorm)
{
output_val = op(output_val, 0);
}
if(mode == pooling_mode::average)
{
// Ignore padding
pool_size -= 1;
}
}
});
output[i] = Type(op.final(output_val, pool_size));
Expand Down
5 changes: 5 additions & 0 deletions src/include/migraphx/rewrite_pooling.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@

#include <string>
#include <migraphx/config.hpp>
#include <migraphx/instruction_ref.hpp>

namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
Expand All @@ -39,6 +40,10 @@ struct MIGRAPHX_EXPORT rewrite_pooling
{
std::string name() const { return "rewrite_pooling"; }
void apply(module& m) const;

private:
void replace_with_reduce(module& m, instruction_ref ins) const;
void replace_dilations_with_gather_pooling(module& m, instruction_ref ins) const;
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These should be static functions defined in rewrite_pooling.cpp file.

};

} // namespace MIGRAPHX_INLINE_NS
Expand Down
20 changes: 16 additions & 4 deletions src/onnx/parse_pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -91,13 +91,21 @@ struct parse_pooling : op_parser<parse_pooling>
kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
}

if(contains(info.attributes, "dilations"))
{
values["dilations"].clear();
copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilations"]));
check_attr_sizes(
kdims, values["dilations"].size(), "PARSE_POOLING: inconsistent dilations");
}

// lp_order attribute
if(contains(info.attributes, "p"))
{
values["lp_order"] = info.attributes.at("p").i();
}

// ensure pads availabe only when auto_pad is "NOT_SET"
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");

return values;
Expand Down Expand Up @@ -169,10 +177,15 @@ struct parse_pooling : op_parser<parse_pooling>
std::fill_n(values["stride"].begin(), kdims, 1);
}

if(values["dilations"].size() != kdims)
{
values["dilations"].resize(kdims);
std::fill_n(values["dilations"].begin(), kdims, 1);
}

// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;

// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
Expand All @@ -189,11 +202,10 @@ struct parse_pooling : op_parser<parse_pooling>
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
std::vector<size_t>(in_shape.ndim() - 2, 1),
values["dilations"].to_vector<std::size_t>(),
in_shape.lens(),
paddings);
values["padding"] = paddings;
Expand Down
160 changes: 136 additions & 24 deletions src/rewrite_pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -46,36 +46,148 @@ void rewrite_pooling::apply(module& m) const
auto&& s = ins->inputs().front()->get_shape();
if(not s.standard())
continue;
auto&& op = any_cast<op::pooling>(ins->get_operator());
if(not std::all_of(op.padding.begin(), op.padding.end(), [](auto i) { return i == 0; }))
continue;
if(not std::all_of(op.stride.begin(), op.stride.end(), [](auto i) { return i == 1; }))
continue;
auto lens = s.lens();
if(not std::equal(lens.begin() + 2, lens.end(), op.lengths.begin(), op.lengths.end()))
continue;
std::int64_t n = s.lens()[0];
std::int64_t c = s.lens()[1];
auto reshape = m.insert_instruction(
ins, make_op("reshape", {{"dims", {n * c, -1}}}), ins->inputs().front());
instruction_ref pooling{};

// average pooling
if(op.mode == op::pooling_mode::average)
auto&& op = any_cast<op::pooling>(ins->get_operator());
bool same_kernel_as_shape = std::equal(
s.lens().cbegin() + 2, s.lens().cend(), op.lengths.cbegin(), op.lengths.cend());
bool default_strides =
std::all_of(op.stride.cbegin(), op.stride.cend(), [](auto i) { return i == 1; });
bool default_padding =
std::all_of(op.padding.cbegin(), op.padding.cend(), [](auto i) { return i == 0; });
bool default_dilations =
std::all_of(op.dilations.cbegin(), op.dilations.cend(), [](auto i) { return i == 1; });
if(same_kernel_as_shape and default_strides and default_padding and default_dilations)
{
pooling = m.insert_instruction(ins, make_op("reduce_mean", {{"axes", {1}}}), reshape);
replace_with_reduce(m, ins);
}
// max pooling
else
else if(not default_dilations)
{
pooling = m.insert_instruction(ins, make_op("reduce_max", {{"axes", {1}}}), reshape);
// Dilated AvgPool with padding is not supported
if(not default_padding and op.mode == op::pooling_mode::average)
{
continue;
}
auto size =
std::accumulate(s.lens().cbegin(), s.lens().cend(), 1, std::multiplies<size_t>());
// Can't handle too much size because of literal size
if(size > 100000)
{
continue;
}

replace_dilations_with_gather_pooling(m, ins);
}
}
}

void rewrite_pooling::replace_with_reduce(module& m, instruction_ref ins) const
{
auto&& s = ins->inputs().front()->get_shape();
auto&& op = any_cast<op::pooling>(ins->get_operator());
std::int64_t n = s.lens()[0];
std::int64_t c = s.lens()[1];
auto reshape = m.insert_instruction(
ins, make_op("reshape", {{"dims", {n * c, -1}}}), ins->inputs().front());
instruction_ref pooling{};

std::vector<int64_t> rsp_lens(lens.size(), 1);
rsp_lens[0] = n;
rsp_lens[1] = c;
m.replace_instruction(ins, make_op("reshape", {{"dims", rsp_lens}}), pooling);
// average pooling
if(op.mode == op::pooling_mode::average)
{
pooling = m.insert_instruction(ins, make_op("reduce_mean", {{"axes", {1}}}), reshape);
}
// max pooling
else
{
pooling = m.insert_instruction(ins, make_op("reduce_max", {{"axes", {1}}}), reshape);
}

std::vector<int64_t> rsp_lens(s.lens().size(), 1);
rsp_lens[0] = n;
rsp_lens[1] = c;
m.replace_instruction(ins, make_op("reshape", {{"dims", rsp_lens}}), pooling);
}

void rewrite_pooling::replace_dilations_with_gather_pooling(module& m, instruction_ref ins) const
{
// TODO remove this when MIOpen supports dilated pooling
auto&& s = ins->inputs().front()->get_shape();
auto&& op = any_cast<op::pooling>(ins->get_operator());
// Ignore N, C axes
std::vector<size_t> dims = {s.lens().cbegin() + 2, s.lens().cend()};

bool default_padding =
std::all_of(op.padding.cbegin(), op.padding.cend(), [](auto i) { return i == 0; });

if(not default_padding)
{
for(size_t idx{0}; idx < op.padding.size(); ++idx)
{
// We need to pad both ends
dims[idx] += op.padding.at(idx) * 2;
}
}
std::vector<size_t> kernels = op.lengths;
std::vector<size_t> strides = op.stride;
std::vector<size_t> dilations = op.dilations;

std::vector<std::vector<int>> axis_indices;
axis_indices.resize(dims.size());

for(auto idx{0}; idx < dims.size(); ++idx)
{
// Only consider if iw fits into the window
for(size_t stride{0}; stride < dims.at(idx) - dilations.at(idx) * (kernels.at(idx) - 1);
stride += strides.at(idx))
{
for(size_t step{0}; step < kernels.at(idx); ++step)
{
axis_indices.at(idx).push_back(stride + dilations.at(idx) * step);
}
}
}

auto elements = ins->inputs().front();
if(not default_padding)
{
// Pad supports asym, we need to provide both ends
std::vector<size_t> padding(2 * s.lens().size(), 0);
// Format will be e.g {N, C, P1, P2, N, C, P1, P2}
for(size_t idx{0}; idx < op.padding.size(); ++idx)
{
// Ignore N, C axes
padding.at(2 + idx) = op.padding.at(idx);
padding.at(2 + idx + s.lens().size()) = op.padding.at(idx);
}

// Default value needed for Max pooling
elements = m.insert_instruction(
ins,
make_op("pad", {{"pads", padding}, {"value", std::numeric_limits<float>::lowest()}}),
elements);
}

for(auto idx{0}; idx < axis_indices.size(); ++idx)
{
migraphx::shape s_indices{migraphx::shape::int32_type, {axis_indices.at(idx).size()}};
auto indices = m.add_literal(migraphx::literal{s_indices, axis_indices.at(idx)});
elements = m.insert_instruction(
ins, make_op("gather", {{"axis", idx + 2 /*ignore N,C*/}}), elements, indices);
}

// Ignore padding
std::vector<size_t> new_padding(kernels.size(), 0);
// The kernel window elements are places next to each other. E.g. {x1, y1, x2, y2, ...}
// We need to skip them to not overlap
std::vector<size_t> new_strides(kernels);
// Ignore dilations
std::vector<size_t> new_dilations(kernels.size(), 1);
m.replace_instruction(ins,
make_op("pooling",
{{"mode", op.mode},
{"padding", new_padding},
{"stride", new_strides},
{"lengths", kernels},
{"dilations", new_dilations}}),
elements);
}

} // namespace MIGRAPHX_INLINE_NS
Expand Down
Loading
Loading