Skip to content

Commit

Permalink
Merge branch 'master' into dp/quad-grid
Browse files Browse the repository at this point in the history
  • Loading branch information
dpanici authored Aug 16, 2024
2 parents a1c80e4 + 2646876 commit 890cb62
Showing 1 changed file with 15 additions and 88 deletions.
103 changes: 15 additions & 88 deletions tests/test_examples.py
Original file line number Diff line number Diff line change
Expand Up @@ -440,7 +440,6 @@ def test_NAE_QSC_solve():
orig_Rax_val = eq.axis.R_n
orig_Zax_val = eq.axis.Z_n

eq_fit = eq.copy()
eq_lambda_fixed_0th_order = eq.copy()
eq_lambda_fixed_1st_order = eq.copy()

Expand Down Expand Up @@ -472,7 +471,6 @@ def test_NAE_QSC_solve():
xtol=1e-6,
constraints=constraints,
)
grid = LinearGrid(L=10, M=20, N=20, NFP=eq.NFP, sym=True, axis=False)
grid_axis = LinearGrid(rho=0.0, theta=0.0, N=eq.N_grid, NFP=eq.NFP)
# Make sure axis is same
for eqq, string in zip(
Expand All @@ -482,24 +480,15 @@ def test_NAE_QSC_solve():
np.testing.assert_array_almost_equal(orig_Rax_val, eqq.axis.R_n, err_msg=string)
np.testing.assert_array_almost_equal(orig_Zax_val, eqq.axis.Z_n, err_msg=string)

# Make sure surfaces of solved equilibrium are similar near axis as QSC
rho_err, theta_err = area_difference_desc(eqq, eq_fit)
# Make sure iota of solved equilibrium is same on-axis as QSC

np.testing.assert_allclose(rho_err[:, 0:-6], 0, atol=1.5e-2, err_msg=string)
np.testing.assert_allclose(theta_err[:, 0:-6], 0, atol=1e-3, err_msg=string)

# Make sure iota of solved equilibrium is same near axis as QSC

iota = grid.compress(eqq.compute("iota", grid=grid)["iota"])
iota = eqq.compute("iota", grid=LinearGrid(rho=0.0))["iota"]

np.testing.assert_allclose(iota[0], qsc.iota, atol=1e-5, err_msg=string)
np.testing.assert_allclose(iota[1:10], qsc.iota, atol=1e-3, err_msg=string)

# check lambda to match near axis
# Evaluate lambda near the axis
# check lambda to match on-axis
data_nae = eqq.compute(["lambda", "|B|"], grid=grid_axis)
lam_nae = data_nae["lambda"]
# Reshape to form grids on theta and phi

phi = np.squeeze(grid_axis.nodes[:, 2])
np.testing.assert_allclose(
Expand All @@ -526,7 +515,6 @@ def test_NAE_QSC_solve_near_axis_based_off_eq():
orig_Rax_val = eq.axis.R_n
orig_Zax_val = eq.axis.Z_n

eq_fit = eq.copy()
eq_lambda_fixed_0th_order = eq.copy()
eq_lambda_fixed_1st_order = eq.copy()

Expand Down Expand Up @@ -558,7 +546,6 @@ def test_NAE_QSC_solve_near_axis_based_off_eq():
xtol=1e-6,
constraints=constraints,
)
grid = LinearGrid(L=10, M=20, N=20, NFP=eq.NFP, sym=True, axis=False)
grid_axis = LinearGrid(rho=0.0, theta=0.0, N=eq.N_grid, NFP=eq.NFP)
# Make sure axis is same
for eqq, string in zip(
Expand All @@ -568,18 +555,11 @@ def test_NAE_QSC_solve_near_axis_based_off_eq():
np.testing.assert_array_almost_equal(orig_Rax_val, eqq.axis.R_n, err_msg=string)
np.testing.assert_array_almost_equal(orig_Zax_val, eqq.axis.Z_n, err_msg=string)

# Make sure surfaces of solved equilibrium are similar near axis as QSC
rho_err, theta_err = area_difference_desc(eqq, eq_fit)

np.testing.assert_allclose(rho_err[:, 0:-6], 0, atol=1.5e-2, err_msg=string)
np.testing.assert_allclose(theta_err[:, 0:-6], 0, atol=1e-3, err_msg=string)

# Make sure iota of solved equilibrium is same near axis as QSC
# Make sure iota of solved equilibrium is same on axis as QSC

iota = grid.compress(eqq.compute("iota", grid=grid)["iota"])
iota = eqq.compute("iota", grid=LinearGrid(rho=0.0))["iota"]

np.testing.assert_allclose(iota[0], qsc.iota, atol=1e-5, err_msg=string)
np.testing.assert_allclose(iota[1:10], qsc.iota, rtol=5e-3, err_msg=string)

### check lambda to match on axis
# Evaluate lambda on the axis
Expand All @@ -603,18 +583,16 @@ def test_NAE_QSC_solve_near_axis_based_off_eq():
def test_NAE_QIC_solve():
"""Test O(rho) NAE QIC constraints solve."""
# get Qic example
qic = Qic.from_paper("QI NFP2 r2", nphi=301, order="r1")
qic = Qic.from_paper("QI NFP2 r2", nphi=199, order="r1")
qic.lasym = False # don't need to consider stellarator asym for order 1 constraints
ntheta = 75
r = 0.01
N = 11
N = 9
eq = Equilibrium.from_near_axis(qic, r=r, L=7, M=7, N=N, ntheta=ntheta)

orig_Rax_val = eq.axis.R_n
orig_Zax_val = eq.axis.Z_n

eq_fit = eq.copy()

# this has all the constraints we need,
cs = get_NAE_constraints(eq, qic, order=1)

Expand All @@ -629,75 +607,24 @@ def test_NAE_QIC_solve():
np.testing.assert_array_almost_equal(orig_Rax_val, eq.axis.R_n)
np.testing.assert_array_almost_equal(orig_Zax_val, eq.axis.Z_n)

# Make sure surfaces of solved equilibrium are similar near axis as QIC
rho_err, theta_err = area_difference_desc(eq, eq_fit)

np.testing.assert_allclose(rho_err[:, 0:3], 0, atol=5e-2)
# theta error isn't really an indicator of near axis behavior
# since it's computed over the full radius, but just indicates that
# eq is similar to eq_fit
np.testing.assert_allclose(theta_err, 0, atol=5e-2)

# Make sure iota of solved equilibrium is same near axis as QIC
grid = LinearGrid(L=10, M=20, N=20, NFP=eq.NFP, sym=True, axis=False)
iota = grid.compress(eq.compute("iota", grid=grid)["iota"])
iota = eq.compute("iota", grid=LinearGrid(rho=0.0))["iota"]

np.testing.assert_allclose(iota[0], qic.iota, rtol=1e-5)
np.testing.assert_allclose(iota[1:10], qic.iota, rtol=1e-3)

# check lambda to match near axis
grid_2d_05 = LinearGrid(rho=np.array(1e-6), M=50, N=50, NFP=eq.NFP, endpoint=True)
grid_axis = LinearGrid(rho=0.0, theta=0.0, zeta=qic.phi, NFP=eq.NFP)
phi = grid_axis.nodes[:, 2].squeeze()

# Evaluate lambda near the axis
data_nae = eq.compute("lambda", grid=grid_2d_05)
lam_nae = data_nae["lambda"]
# check lambda to match on-axis
lam_nae = eq.compute("lambda", grid=grid_axis)["lambda"]

# Reshape to form grids on theta and phi
zeta = (
grid_2d_05.nodes[:, 2]
.reshape(
(grid_2d_05.num_theta, grid_2d_05.num_rho, grid_2d_05.num_zeta), order="F"
)
.squeeze()
)

lam_nae = lam_nae.reshape(
(grid_2d_05.num_theta, grid_2d_05.num_rho, grid_2d_05.num_zeta), order="F"
)

phi = np.squeeze(zeta[0, :])
lam_nae = np.squeeze(lam_nae[:, 0, :])

lam_av_nae = np.mean(lam_nae, axis=0)
np.testing.assert_allclose(
lam_av_nae, -qic.iota * qic.nu_spline(phi), atol=1e-4, rtol=1e-2
lam_nae, -qic.iota * qic.nu_spline(phi), atol=1e-4, rtol=1e-2
)

# check |B| on axis

grid = LinearGrid(M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, rho=np.array(1e-6))
# Evaluate B modes near the axis
data_nae = eq.compute(["|B|_mn", "B modes"], grid=grid)
modes = data_nae["B modes"]
B_mn_nae = data_nae["|B|_mn"]
# Evaluate B on an angular grid
theta = np.linspace(0, 2 * np.pi, 150)
phi = np.linspace(0, 2 * np.pi, qic.nphi)
th, ph = np.meshgrid(theta, phi)
B_nae = np.zeros((qic.nphi, 150))

for i, (l, m, n) in enumerate(modes):
if m >= 0 and n >= 0:
B_nae += B_mn_nae[i] * np.cos(m * th) * np.cos(n * ph)
elif m >= 0 > n:
B_nae += -B_mn_nae[i] * np.cos(m * th) * np.sin(n * ph)
elif m < 0 <= n:
B_nae += -B_mn_nae[i] * np.sin(m * th) * np.cos(n * ph)
elif m < 0 and n < 0:
B_nae += B_mn_nae[i] * np.sin(m * th) * np.sin(n * ph)
# Eliminate the poloidal angle to focus on the toroidal behavior
B_av_nae = np.mean(B_nae, axis=1)
np.testing.assert_allclose(B_av_nae, np.ones(np.size(phi)) * qic.B0, atol=2e-2)
B_nae = eq.compute(["|B|"], grid=grid_axis)["|B|"]
np.testing.assert_allclose(B_nae, qic.B0, atol=1e-3)


@pytest.mark.unit
Expand Down

0 comments on commit 890cb62

Please sign in to comment.