Skip to content

Commit

Permalink
fusion power objective
Browse files Browse the repository at this point in the history
  • Loading branch information
daniel-dudt committed Aug 22, 2024
1 parent 5f4aa26 commit 25b5846
Show file tree
Hide file tree
Showing 3 changed files with 272 additions and 1 deletion.
38 changes: 37 additions & 1 deletion desc/compute/_equil.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
"""

from interpax import interp1d
from scipy.constants import mu_0
from scipy.constants import elementary_charge, mu_0

from desc.backend import jnp

Expand Down Expand Up @@ -843,3 +843,39 @@ def _P_ISS04(params, transforms, profiles, data, **kwargs):
)
) ** (1 / 0.39)
return data


@register_compute_fun(
name="P_fusion",
label="P_{fusion}",
units="W",
units_long="Watts",
description="Fusion power",
dim=0,
params=[],
transforms={"grid": []},
profiles=[],
coordinates="",
data=["rho", "ni", "<sigma*nu>", "sqrt(g)"],
resolution_requirement="rtz",
reaction="str: Fusion reaction. One of {'T(d,n)4He', 'D(d,p)T', 'D(d,n)3He'}. "
+ "Default is 'T(d,n)4He'.",
)
def _P_fusion(params, transforms, profiles, data, **kwargs):
reaction = kwargs.get("fuel", "T(d,n)4He")
match reaction:
case "T(d,n)4He":
energy = 3.52e6 + 14.06e6 # eV
case "D(d,p)T":
energy = 1.01e6 + 3.02e6 # eV
case "D(d,n)3He":
energy = 0.82e6 + 2.45e6 # eV

reaction_rate = jnp.sum(
*data["ni"] ** 2
* data["<sigma*nu>"]
* data["sqrt(g)"]
* transforms["grid"].weights
) # reactions/s
data["P_fusion"] = reaction_rate * energy * elementary_charge # J/s
return data
62 changes: 62 additions & 0 deletions desc/compute/_profiles.py
Original file line number Diff line number Diff line change
Expand Up @@ -1909,3 +1909,65 @@ def _shear(params, transforms, profiles, data, **kwargs):
None,
)
return data


@register_compute_fun(
name="<sigma*nu>",
label="\\langle\\sigma\\nu\\rangle",
units="m^3 \\cdot s^{-1}",
units_long="cubic meters / second",
description="Thermal reactivity from Bosch-Hale parameterization",
dim=1,
params=["Ti_l"],
transforms={"grid": []},
profiles=["ion_temperature"],
coordinates="r",
data=["Ti"],
reaction="str: Fusion reaction. One of {'T(d,n)4He', 'D(d,p)T', 'D(d,n)3He'}. "
+ "Default is 'T(d,n)4He'.",
)
def _reactivity(params, transforms, profiles, data, **kwargs):
# Bosch and Hale. “Improved Formulas for Fusion Cross-Sections and Thermal
# Reactivities.” Nuclear Fusion 32 (April 1992): 611-631.
# https://doi.org/10.1088/0029-5515/32/4/I07.
reaction = kwargs.get("fuel", "T(d,n)4He")
match reaction:
case "T(d,n)4He":
B_G = 34.382
mc2 = 1124656
C1 = 1.17302e-9
C2 = 1.51361e-2
C3 = 7.51886e-2
C4 = 4.60643e-3
C5 = 1.35000e-2
C6 = -1.06750e-4
C7 = 1.36600e-5
case "D(d,p)T":
B_G = 31.3970
mc2 = 937814
C1 = 5.65718e-12
C2 = 3.41267e-3
C3 = 1.99167e-3
C4 = 0
C5 = 1.05060e-5
C6 = 0
C7 = 0
case "D(d,n)3He":
B_G = 31.3970
mc2 = 937814
C1 = 5.43360e-12
C2 = 5.85778e-3
C3 = 7.68222e-3
C4 = 0
C5 = -2.96400e-6
C6 = 0
C7 = 0

T = data["Ti"] / 1e3 # keV
theta = T / (
1 - (T * (C2 + T * (C4 + T * C6))) / (1 + T * (C3 + T * (C5 + T * C7)))
)
xi = (B_G**2 / (4 * theta)) ** (1 / 3)
sigma_nu = C1 * theta * jnp.sqrt(xi / (mc2 * T**3)) * jnp.exp(-3 * xi) # cm^3/s
data["<sigma*nu>"] = sigma_nu / 1e6 # m^3/s
return data
173 changes: 173 additions & 0 deletions desc/objectives/_confinement.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,179 @@
from .objective_funs import _Objective


class FusionPower(_Objective):
"""Fusion power.
P = e E ∫ n^2 ⟨σν⟩ dV (W)
References
----------
https://doi.org/10.1088/0029-5515/32/4/I07.
Improved Formulas for Fusion Cross-Sections and Thermal Reactivities.
H.-S. Bosch and G.M. Hale. Nucl. Fusion April 1992; 32 (4): 611-631.
Parameters
----------
eq : Equilibrium
Equilibrium that will be optimized to satisfy the Objective.
target : {float, ndarray}, optional
Target value(s) of the objective. Only used if bounds is None.
Must be broadcastable to Objective.dim_f. Defaults to ``target=0``.
bounds : tuple of {float, ndarray}, optional
Lower and upper bounds on the objective. Overrides target.
Both bounds must be broadcastable to to Objective.dim_f.
Defaults to ``target=0``.
weight : {float, ndarray}, optional
Weighting to apply to the Objective, relative to other Objectives.
Must be broadcastable to to Objective.dim_f
normalize : bool, optional
Whether to compute the error in physical units or non-dimensionalize.
normalize_target : bool, optional
Whether target and bounds should be normalized before comparing to computed
values. If `normalize` is `True` and the target is in physical units,
this should also be set to True.
loss_function : {None, 'mean', 'min', 'max'}, optional
Loss function to apply to the objective values once computed. This loss function
is called on the raw compute value, before any shifting, scaling, or
normalization. Note: Has no effect for this objective.
deriv_mode : {"auto", "fwd", "rev"}
Specify how to compute jacobian matrix, either forward mode or reverse mode AD.
"auto" selects forward or reverse mode based on the size of the input and output
of the objective. Has no effect on self.grad or self.hess which always use
reverse mode and forward over reverse mode respectively.
reaction : str, optional
Fusion reaction. One of {'T(d,n)4He', 'D(d,p)T', 'D(d,n)3He'}.
Default = 'T(d,n)4He'.
grid : Grid, optional
Collocation grid used to compute the intermediate quantities.
Defaults to ``QuadratureGrid(eq.L_grid, eq.M_grid, eq.N_grid, eq.NFP)``.
name : str, optional
Name of the objective function.
"""

_scalar = True
_units = "(W)"
_print_value_fmt = "Fusion power: {:10.3e} "

def __init__(
self,
eq,
target=None,
bounds=None,
weight=1,
normalize=True,
normalize_target=True,
loss_function=None,
deriv_mode="auto",
reaction="T(d,n)4He",
grid=None,
name="fusion power",
):
if target is None and bounds is None:
target = 0
self._reaction = reaction
self._grid = grid
super().__init__(
things=eq,
target=target,
bounds=bounds,
weight=weight,
normalize=normalize,
normalize_target=normalize_target,
loss_function=loss_function,
deriv_mode=deriv_mode,
name=name,
)

def build(self, use_jit=True, verbose=1):
"""Build constant arrays.
Parameters
----------
use_jit : bool, optional
Whether to just-in-time compile the objective and derivatives.
verbose : int, optional
Level of output.
"""
eq = self.things[0]
errorif(
eq.ion_density is None,
ValueError,
"Equilibrium must have an ion density profile.",
)
if self._grid is None:
self._grid = QuadratureGrid(
L=eq.L_grid,
M=eq.M_grid,
N=eq.N_grid,
NFP=eq.NFP,
)
self._dim_f = 1
self._data_keys = ["P_fusion"]

timer = Timer()
if verbose > 0:
print("Precomputing transforms")
timer.start("Precomputing transforms")

self._constants = {
"profiles": get_profiles(self._data_keys, obj=eq, grid=self._grid),
"transforms": get_transforms(self._data_keys, obj=eq, grid=self._grid),
"reaction": self._reaction,
}

timer.stop("Precomputing transforms")
if verbose > 1:
timer.disp("Precomputing transforms")

if self._normalize:
scales = compute_scaling_factors(eq)
self._normalization = scales["W_p"]

super().build(use_jit=use_jit, verbose=verbose)

def compute(self, params, constants=None):
"""Compute fusion power.
Parameters
----------
params : dict
Dictionary of equilibrium or surface degrees of freedom, eg
Equilibrium.params_dict
constants : dict
Dictionary of constant data, eg transforms, profiles etc. Defaults to
self.constants
Returns
-------
P : float
Fusion power (W).
"""
if constants is None:
constants = self.constants
data = compute_fun(
"desc.equilibrium.equilibrium.Equilibrium",
self._data_keys,
params=params,
transforms=constants["transforms"],
profiles=constants["profiles"],
reaction=constants["reaction"],
)
return data["P_fusion"]

@property
def reaction(self):
"""str: Fusion reaction. One of {'T(d,n)4He', 'D(d,p)T', 'D(d,n)3He'}."""
return self._reaction

@reaction.setter
def reaction(self, new):
self._reaction = new


class HeatingPowerISS04(_Objective):
"""Heating power required by the ISS04 energy confinement time scaling.
Expand Down

0 comments on commit 25b5846

Please sign in to comment.