Skip to content

Commit

Permalink
Merge branch 'develop' into siteID-refactor
Browse files Browse the repository at this point in the history
  • Loading branch information
Sweetdevil144 authored Aug 12, 2024
2 parents e76124d + 2860aef commit dff7ab8
Showing 1 changed file with 44 additions and 6 deletions.
50 changes: 44 additions & 6 deletions modules/assim.sequential/R/downscale_function.R
Original file line number Diff line number Diff line change
Expand Up @@ -140,45 +140,83 @@ SDA_downscale <- function(preprocessed, date, carbon_pool, covariates, model_typ
predictions[[i]] <- stats::predict(models[[i]], test_data)
}
} else if (model_type == "cnn") {
# Reshape input data for CNN
x_train <- keras3::array_reshape(x_train, c(nrow(x_train), 1, ncol(x_train)))
x_test <- keras3::array_reshape(x_test, c(nrow(x_test), 1, ncol(x_test)))

for (i in seq_along(carbon_data)) {
# Define the CNN model architecture
# Used dual batch normalization and dropout as the first set of batch normalization and dropout operates on the lower-level features extracted by the convolutional layer, the second set works on the higher-level features learned by the dense layer.
model <- keras3::keras_model_sequential() |>
# 1D Convolutional layer: Extracts local features from input data
keras3::layer_conv_1d(filters = 64, kernel_size = 1, activation = 'relu', input_shape = c(1, length(covariate_names))) |>
# Batch normalization: Normalizes layer inputs, stabilizes learning, reduces internal covariate shift
keras3::layer_batch_normalization() |>
# Dropout: Randomly sets some of inputs to 0, reducing overfitting and improving generalization
keras3::layer_dropout(rate = 0.3) |>
# Flatten: Converts 3D output to 1D for dense layer input
keras3::layer_flatten() |>
# Dense layer: Learns complex combinations of features
keras3::layer_dense(units = 64, activation = 'relu') |>
# Second batch normalization: Further stabilizes learning in deeper layers
keras3::layer_batch_normalization() |>
# Second dropout: Additional regularization to prevent overfitting in final layers
keras3::layer_dropout(rate = 0.3) |>
# Output layer: Single neuron for regression prediction
keras3::layer_dense(units = 1)

# Learning rate scheduler
lr_schedule <- keras3::learning_rate_schedule_exponential_decay(
initial_learning_rate = 0.001,
decay_steps = 1000,
decay_rate = 0.9
)

# Compile the model
model |> keras3::compile(
loss = 'mean_squared_error',
optimizer = keras3::optimizer_adam(),
optimizer = keras3::optimizer_adam(learning_rate = lr_schedule),
metrics = c('mean_absolute_error')
)

# Early stopping callback
early_stopping <- keras3::callback_early_stopping(
monitor = 'val_loss',
patience = 10,
restore_best_weights = TRUE
)

# Train the model
model |> keras3::fit(
x = x_train,
y = y_train[, i],
epochs = 100,
epochs = 500, # Increased max epochs
batch_size = 32,
validation_split = 0.2,
callbacks = list(early_stopping),
verbose = 0
)


# Store the trained model
models[[i]] <- model


#CNN predictions
cnn_predict <- function(model, newdata, scaling_params) {
newdata <- scale(newdata, center = scaling_params$mean, scale = scaling_params$sd)
newdata <- keras3::array_reshape(newdata, c(nrow(newdata), 1, ncol(newdata)))
predictions <- stats::predict(model, newdata)
return(as.vector(predictions))
}


# Create a prediction raster from covariates
prediction_rast <- terra::rast(covariates)

# Generate spatial predictions using the trained model
maps[[i]] <- terra::predict(prediction_rast, model = models[[i]],
fun = cnn_predict,
scaling_params = scaling_params)


# Make predictions on held-out test data
predictions[[i]] <- cnn_predict(models[[i]], x_data[-sample, ], scaling_params)
}
} else {
Expand Down

0 comments on commit dff7ab8

Please sign in to comment.