Skip to content

Commit

Permalink
转换规则 No.234/236/237 (#133)
Browse files Browse the repository at this point in the history
* 转换规则 No.234/236/237

* Fix variable naming in TensorDatasetMatcher.
  • Loading branch information
txyugood authored Jul 5, 2023
1 parent fafdd56 commit 9d691cc
Show file tree
Hide file tree
Showing 5 changed files with 360 additions and 0 deletions.
19 changes: 19 additions & 0 deletions paconvert/api_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -9194,6 +9194,13 @@
"drop_last"
]
},
"torch.utils.data.ChainDataset": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.io.ChainDataset",
"args_list": [
"datasets"
]
},
"torch.utils.data.Dataset": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.io.Dataset"
Expand Down Expand Up @@ -9245,6 +9252,18 @@
"data_source"
]
},
"torch.utils.data.Subset": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.io.Subset",
"args_list": [
"dataset",
"indices"
]
},
"torch.utils.data.TensorDataset": {
"Matcher": "TensorDatasetMatcher",
"paddle_api": "paddle.io.TensorDataset"
},
"torch.utils.data.default_collate": {
"Matcher": "GenericMatcher",
"paddle_api": "paddle.io.dataloader.collate.default_collate_fn",
Expand Down
12 changes: 12 additions & 0 deletions paconvert/api_matcher.py
Original file line number Diff line number Diff line change
Expand Up @@ -3687,6 +3687,18 @@ def generate_code(self, kwargs):
return code


class TensorDatasetMatcher(BaseMatcher):
def get_paddle_nodes(self, args, kwargs):
new_args = self.parse_args(args)
tensors_v = "[{}".format(new_args[0])
for arg in new_args[1:]:
tensors_v += ", {}".format(arg)
tensors_v += "]"
code = "{}({})".format(self.get_paddle_api(), tensors_v)
node = ast.parse(code.strip("\n")).body
return node


class TensorMaxMinMatcher(BaseMatcher):
def get_paddle_class_nodes(self, func, args, kwargs):

Expand Down
106 changes: 106 additions & 0 deletions tests/test_utils_data_ChainDataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.utils.data.ChainDataset")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import numpy as np
import math
import torch
from torch.utils.data import IterableDataset, ChainDataset
class MyIterableDataset(torch.utils.data.IterableDataset):
def __init__(self, start, end):
super(MyIterableDataset).__init__()
assert end > start, "this example code only works with end >= start"
self.start = start
self.end = end
def __iter__(self):
iter_start = self.start
iter_end = self.end
return iter(range(iter_start, iter_end))
dataset = ChainDataset([MyIterableDataset(start=3, end=7), MyIterableDataset(start=3, end=7)])
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import numpy as np
import math
import torch
from torch.utils.data import IterableDataset, ChainDataset
class MyIterableDataset(torch.utils.data.IterableDataset):
def __init__(self, start, end):
super(MyIterableDataset).__init__()
assert end > start, "this example code only works with end >= start"
self.start = start
self.end = end
def __iter__(self):
iter_start = self.start
iter_end = self.end
return iter(range(iter_start, iter_end))
dataset = ChainDataset([MyIterableDataset(start=1, end=10), MyIterableDataset(start=1, end=3)])
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import numpy as np
import math
import torch
from torch.utils.data import IterableDataset, ChainDataset
class MyIterableDataset(torch.utils.data.IterableDataset):
def __init__(self, start, end):
super(MyIterableDataset).__init__()
assert end > start, "this example code only works with end >= start"
self.start = start
self.end = end
def __iter__(self):
iter_start = self.start
iter_end = self.end
return iter(range(iter_start, iter_end))
dataset = ChainDataset([MyIterableDataset(start=1, end=10)])
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])
120 changes: 120 additions & 0 deletions tests/test_utils_data_Subset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.utils.data.Subset")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import torch
from torch.utils.data import Dataset, Subset
class MyDataset(Dataset):
def __init__(self, size=10):
super(Dataset).__init__()
self.data = list(range(size))
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
dataset = Subset(MyDataset(10),[1, 2, 3, 4, 5, 6])
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch
from torch.utils.data import Dataset, Subset
class MyDataset(Dataset):
def __init__(self, size=10):
super(Dataset).__init__()
self.data = list(range(size))
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
dataset = Subset(MyDataset(10),[9, 1])
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch
from torch.utils.data import Dataset, Subset
class MyDataset(Dataset):
def __init__(self, size=10):
super(Dataset).__init__()
self.data = list(range(size))
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
dataset = Subset(MyDataset(10),[9, 1, 3])
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch
from torch.utils.data import Dataset, Subset
class MyDataset(Dataset):
def __init__(self, size=10):
super(Dataset).__init__()
self.data = list(range(size))
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
data = MyDataset(10)
indices = [9, 1, 3]
dataset = Subset(data, indices)
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])
103 changes: 103 additions & 0 deletions tests/test_utils_data_TensorDataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.utils.data.TensorDataset")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import numpy as np
import torch
from torch.utils.data import TensorDataset
np.random.seed(0)
input_np = np.random.random([2, 3, 4]).astype('float32')
input = torch.from_numpy(input_np)
dataset = TensorDataset(input)
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import numpy as np
import torch
from torch.utils.data import TensorDataset
np.random.seed(0)
input_np = np.random.random([2, 3, 4]).astype('float32')
input = torch.from_numpy(input_np)
label_np = np.random.random([2, 1]).astype('int32')
label = torch.from_numpy(label_np)
dataset = TensorDataset(input, label)
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import numpy as np
import torch
from torch.utils.data import TensorDataset
np.random.seed(0)
input_np = np.random.random([2, 3, 4]).astype('float32')
input = torch.from_numpy(input_np)
input_np2 = np.random.random([2, 5, 5]).astype('float32')
input2 = torch.from_numpy(input_np2)
label_np = np.random.random([2, 1]).astype('int32')
label = torch.from_numpy(label_np)
dataset = TensorDataset(input, input2, label)
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import numpy as np
import torch
from torch.utils.data import TensorDataset
np.random.seed(0)
input_np = np.random.random([2, 3, 4]).astype('float32')
input = torch.from_numpy(input_np)
input_np2 = np.random.random([2, 5, 5]).astype('float32')
input2 = torch.from_numpy(input_np2)
label_np = np.random.random([2, 1]).astype('int32')
label = torch.from_numpy(label_np)
data = [input, input2, label]
dataset = TensorDataset(*data)
result = []
for d in dataset:
result.append(d)
"""
)
obj.run(pytorch_code, ["result"])

0 comments on commit 9d691cc

Please sign in to comment.