Skip to content

Commit

Permalink
转换规则No 73 (#139)
Browse files Browse the repository at this point in the history
* torch.nn.functional.multi_margin_loss

* torch.nn.functional.multi_margin_loss

* add size_average
  • Loading branch information
Liyulingyue authored Jun 29, 2023
1 parent 2e85581 commit 3a9ce60
Show file tree
Hide file tree
Showing 2 changed files with 141 additions and 0 deletions.
17 changes: 17 additions & 0 deletions paconvert/api_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -8998,6 +8998,23 @@
"pos_weight"
]
},
"torch.nn.functional.multi_margin_loss": {
"Matcher": "SizeAverageMatcher",
"paddle_api": "paddle.nn.functional.multi_margin_loss",
"args_list": [
"input",
"target",
"p",
"margin",
"weight",
"size_average",
"reduce",
"reduction"
],
"kwargs_change": {
"target": "label"
}
},
"torch.utils.data.BatchSampler": {
"Matcher": "TorchUtilDataBatchSampler",
"args_list": [
Expand Down
124 changes: 124 additions & 0 deletions tests/test_nn_functional_multi_margin_loss.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import textwrap

from apibase import APIBase

obj = APIBase("torch.nn.functional.multi_margin_loss")


def test_case_1():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
result = torch.nn.functional.multi_margin_loss(input, target)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
result = torch.nn.functional.multi_margin_loss(input, target, reduction='sum')
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
result = torch.nn.functional.multi_margin_loss(input, target, reduction='none')
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
weight = torch.tensor([0.2, 0.3, 0.5])
result = torch.nn.functional.multi_margin_loss(input, target, weight=weight)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
result = torch.nn.functional.multi_margin_loss(input, target, size_average=False)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_6():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
result = torch.nn.functional.multi_margin_loss(input, target, reduce=False)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_7():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
result = torch.nn.functional.multi_margin_loss(input, target, margin=2)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_8():
pytorch_code = textwrap.dedent(
"""
import torch
input = torch.tensor([[-1.2837, -0.0297, 0.0355],
[ 0.9112, -1.7526, -0.4061]])
target = torch.tensor([1, 0])
result = torch.nn.functional.multi_margin_loss(input, target, p=2)
"""
)
obj.run(pytorch_code, ["result"])

0 comments on commit 3a9ce60

Please sign in to comment.