Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Add gather_nd tests #1389

Merged
merged 3 commits into from
May 12, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
99 changes: 54 additions & 45 deletions python/tests/ops/test_gather_nd_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,76 +14,85 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import unittest
import numpy as np
from op_test import OpTest, OpTestTool
import paddle
import cinn
from cinn.frontend import *
from cinn.common import *
import logging
import os
from itertools import product

logging.basicConfig(level=os.environ.get('LOG_LEVEL', 'INFO').upper())
logger = logging.getLogger(name="gather_nd")


@OpTestTool.skip_if(not is_compiled_with_cuda(),
"x86 test will be skipped due to timeout.")
class TestGatherNdOp(OpTest):
def setUp(self):
self.data = []
self.init_case()

def init_case(self):
self.inputs = {
'x': self.random([2, 3, 4], 'float32'),
'index': np.array([[1]], dtype='int32')
}
self.inputs = [{"x": [3, 4, 3], "index": [4, 1]}]
self.dtypes = ["float32"]

def build_paddle_program(self, target):
x = paddle.to_tensor(self.inputs["x"], stop_gradient=False)
index = paddle.to_tensor(self.inputs["index"], stop_gradient=False)
out = paddle.gather_nd(x, index)
self.paddle_outputs = [out]
for inputs, dtype in product(self.inputs, self.dtypes):
x_shape = inputs["x"]
index_shape = inputs["index"]
x = np.random.randn(*x_shape).astype(dtype)
index = np.random.randint(0, min(x_shape),
index_shape).astype("int32")
self.data.append([x, index])
x = paddle.to_tensor(x, stop_gradient=False)
index = paddle.to_tensor(index, stop_gradient=False)
out = paddle.gather_nd(x, index)
logger.debug(" -- The output of Paddle:\n{}".format(out))
self.paddle_outputs.append(out)

def build_cinn_program(self, target):
builder = NetBuilder("GatherNd")
x = builder.create_input(
self.nptype2cinntype(self.inputs["x"].dtype),
self.inputs["x"].shape, "x")
index = builder.create_input(
self.nptype2cinntype(self.inputs["index"].dtype),
self.inputs["index"].shape, "index")
out = builder.gather_nd(x, index)

prog = builder.build()
res = self.get_cinn_output(prog, target, [x, index],
[self.inputs["x"], self.inputs["index"]],
[out])

self.cinn_outputs = [res[0]]
for i, (inputs, dtype) in enumerate(product(self.inputs, self.dtypes)):
builder = NetBuilder("gather")
x = builder.create_input(
self.nptype2cinntype(dtype), inputs["x"], "x")
index = builder.create_input(Int(32), inputs["index"], "index")
out = builder.gather_nd(x, index)
prog = builder.build()
res = self.get_cinn_output(prog, target, [x, index], self.data[i],
[out])
logger.debug(" -- The output of CINN:\n{}".format(res))
self.cinn_outputs.extend(res)

def test_check_results(self):
self.check_outputs_and_grads(all_equal=True)


class TestGatherNdCase1(TestGatherNdOp):
def init_case(self):
self.inputs = {
'x': self.random([2, 3, 4], 'float32'),
'index': np.array([[0, 2]], dtype='int32')
}


class TestGatherNdCase2(TestGatherNdOp):
def init_case(self):
self.inputs = {
'x': self.random([2, 3, 4], 'float32'),
'index': np.array([[1, 2, 3]], dtype='int32')
}


class TestGatherNdCase3(TestGatherNdOp):
class TestGatherOpAll(TestGatherNdOp):
def init_case(self):
self.inputs = {
'x': self.random([2, 3, 4], 'float64'),
'index': np.array([[1, 2, 3]], dtype='int64')
}
self.inputs = []
for x_shape in [
[16],
[8, 16],
[4, 8, 16],
[2, 4, 8, 16],
[2, 4, 8, 1],
[2, 4, 8, 1024],
]:
for j in range(1, len(x_shape)):
self.inputs.append({"x": x_shape, "index": [8, j]})

self.dtypes = [
"float32",
"float64",
"int16",
"int32",
"int64",
# "uint8" # note: some types is not supported in paddle now.
]


if __name__ == "__main__":
Expand Down