This repository has been archived by the owner on Jan 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add python unittest of batch_norm_train.
- Loading branch information
Showing
2 changed files
with
112 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) 2021 CINN Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import numpy as np | ||
from op_test import OpTest, OpTestTool | ||
import paddle | ||
import paddle.nn.functional as F | ||
import cinn | ||
from cinn.frontend import * | ||
from cinn.common import * | ||
|
||
|
||
@OpTestTool.skip_if(not is_compiled_with_cuda(), | ||
"x86 test will be skipped due to timeout.") | ||
class TestBatchNormOp(OpTest): | ||
def setUp(self): | ||
def _random(shape, dtype): | ||
return np.random.random(shape).astype(dtype) | ||
|
||
self.config() | ||
self.inputs = { | ||
"x": _random(self.x_shape, self.dtype), | ||
"scale": _random(self.param_shape, self.dtype), | ||
"bias": _random(self.param_shape, self.dtype), | ||
"moving_mean": _random(self.param_shape, self.dtype), | ||
"moving_variance": _random(self.param_shape, self.dtype), | ||
} | ||
|
||
def config(self): | ||
self.dtype = "float32" | ||
self.x_shape = [128, 64, 112, 112] | ||
self.param_shape = [64] | ||
self.epsilon = 1e-05 | ||
self.momentum = 0.9 | ||
self.data_format = "NCHW" | ||
|
||
def build_paddle_program(self, target): | ||
def _create_parameter(name): | ||
param = paddle.create_parameter( | ||
name=name, | ||
shape=self.param_shape, | ||
dtype=self.dtype, | ||
attr=paddle.ParamAttr( | ||
initializer=paddle.nn.initializer.Assign( | ||
self.inputs[name]))) | ||
param.stop_gradient = True | ||
return param | ||
|
||
x = paddle.to_tensor(self.inputs["x"], stop_gradient=False) | ||
scale = paddle.to_tensor(self.inputs["scale"], stop_gradient=False) | ||
bias = paddle.to_tensor(self.inputs["bias"], stop_gradient=False) | ||
running_mean = _create_parameter("moving_mean") | ||
running_variance = _create_parameter("moving_variance") | ||
|
||
out = F.batch_norm( | ||
x=x, | ||
running_mean=running_mean, | ||
running_var=running_variance, | ||
weight=scale, | ||
bias=bias, | ||
epsilon=self.epsilon, | ||
momentum=self.momentum, | ||
training=True, | ||
data_format=self.data_format) | ||
|
||
# Cannot get save_mean and save_variance of paddle. | ||
self.paddle_outputs = [out, running_mean, running_variance, None, None] | ||
|
||
def build_cinn_program(self, target): | ||
builder = NetBuilder("batch_norm") | ||
x = builder.create_input(Float(32), self.inputs["x"].shape, "x") | ||
scale = builder.create_input( | ||
Float(32), self.inputs["scale"].shape, "scale") | ||
bias = builder.create_input( | ||
Float(32), self.inputs["bias"].shape, "bias") | ||
mean = builder.create_input( | ||
Float(32), self.inputs["moving_mean"].shape, "moving_mean") | ||
variance = builder.create_input( | ||
Float(32), self.inputs["moving_variance"].shape, "moving_variance") | ||
outs = builder.batch_norm_train(x, scale, bias, mean, variance) | ||
prog = builder.build() | ||
forward_res = self.get_cinn_output( | ||
prog, target, [x, scale, bias, mean, variance], [ | ||
self.inputs["x"], self.inputs["scale"], self.inputs["bias"], | ||
self.inputs["moving_mean"], self.inputs["moving_variance"] | ||
], outs) | ||
|
||
self.cinn_outputs = forward_res | ||
|
||
def test_check_results(self): | ||
self.check_outputs_and_grads() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |