This repository has been archived by the owner on Jan 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 114
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add unitest for is_inf/is_finite/is_nan (#1483)
* add unitest for is_inf/is_finite/is_nan * fix bugs * fix bugs * fix bugs * add random dada * fix bugs * fix bugs
- Loading branch information
1 parent
0197e86
commit 1a928df
Showing
3 changed files
with
348 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) 2023 CINN Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import unittest | ||
from op_test import OpTest, OpTestTool | ||
from op_test_helper import TestCaseHelper | ||
import paddle | ||
from cinn.frontend import * | ||
from cinn.common import * | ||
|
||
|
||
@OpTestTool.skip_if(not is_compiled_with_cuda(), | ||
"x86 test will be skipped due to timeout.") | ||
class TestIsFiniteOp(OpTest): | ||
def setUp(self): | ||
print(f"\nRunning {self.__class__.__name__}: {self.case}") | ||
self.prepare_inputs() | ||
|
||
def prepare_inputs(self): | ||
self.x_np = self.random( | ||
shape=self.case["x_shape"], | ||
dtype=self.case["x_dtype"], | ||
low=-100, | ||
high=100) | ||
|
||
index = np.random.randint(0, len(self.x_np)) | ||
inf_data = np.where(self.x_np[index] > 0, np.inf, np.nan) | ||
self.x_np[index] = inf_data.astype(self.case["x_dtype"]) | ||
|
||
def build_paddle_program(self, target): | ||
x = paddle.to_tensor(self.x_np, stop_gradient=True) | ||
out = paddle.isfinite(x) | ||
|
||
self.paddle_outputs = [out] | ||
|
||
def build_cinn_program(self, target): | ||
builder = NetBuilder("is_finite") | ||
x = builder.create_input( | ||
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], | ||
"x") | ||
out = builder.is_finite(x) | ||
|
||
prog = builder.build() | ||
|
||
res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) | ||
|
||
self.cinn_outputs = [res[0]] | ||
|
||
def test_check_results(self): | ||
self.check_outputs_and_grads(all_equal=True) | ||
|
||
|
||
class TestIsFiniteOpShape(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestIsFiniteOpShape" | ||
self.cls = TestIsFiniteOp | ||
self.inputs = [{ | ||
"x_shape": [1], | ||
}, { | ||
"x_shape": [1024], | ||
}, { | ||
"x_shape": [1, 2048], | ||
}, { | ||
"x_shape": [1, 1, 1], | ||
}, { | ||
"x_shape": [32, 64], | ||
}, { | ||
"x_shape": [16, 8, 4, 2], | ||
}, { | ||
"x_shape": [16, 8, 4, 2, 1], | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "float32", | ||
}] | ||
self.attrs = [] | ||
|
||
|
||
class TestIsFiniteOpDtype(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestIsFiniteOpDtype" | ||
self.cls = TestIsFiniteOp | ||
self.inputs = [{ | ||
"x_shape": [32, 64], | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "int32", | ||
}, { | ||
"x_dtype": "int64", | ||
}, { | ||
"x_dtype": "float16", | ||
"max_relative_error": 1e-3 | ||
}, { | ||
"x_dtype": "float32", | ||
}, { | ||
"x_dtype": "float64", | ||
}] | ||
self.attrs = [] | ||
|
||
|
||
if __name__ == "__main__": | ||
TestIsFiniteOpShape().run() | ||
TestIsFiniteOpDtype().run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) 2023 CINN Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import unittest | ||
from op_test import OpTest, OpTestTool | ||
from op_test_helper import TestCaseHelper | ||
import paddle | ||
from cinn.frontend import * | ||
from cinn.common import * | ||
|
||
|
||
@OpTestTool.skip_if(not is_compiled_with_cuda(), | ||
"x86 test will be skipped due to timeout.") | ||
class TestIsInfOp(OpTest): | ||
def setUp(self): | ||
print(f"\nRunning {self.__class__.__name__}: {self.case}") | ||
self.prepare_inputs() | ||
|
||
def prepare_inputs(self): | ||
self.x_np = self.random( | ||
shape=self.case["x_shape"], | ||
dtype=self.case["x_dtype"], | ||
low=-100, | ||
high=100) | ||
|
||
index = np.random.randint(0, len(self.x_np)) | ||
inf_data = np.zeros(self.x_np[index].shape, dtype="float") + np.inf | ||
self.x_np[index] = inf_data.astype(self.case["x_dtype"]) | ||
|
||
def build_paddle_program(self, target): | ||
x = paddle.to_tensor(self.x_np, stop_gradient=True) | ||
out = paddle.isinf(x) | ||
|
||
self.paddle_outputs = [out] | ||
|
||
def build_cinn_program(self, target): | ||
builder = NetBuilder("is_inf") | ||
x = builder.create_input( | ||
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], | ||
"x") | ||
out = builder.is_inf(x) | ||
|
||
prog = builder.build() | ||
|
||
res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) | ||
|
||
self.cinn_outputs = [res[0]] | ||
|
||
def test_check_results(self): | ||
self.check_outputs_and_grads(all_equal=True) | ||
|
||
|
||
class TestIsInfOpShape(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestIsInfOpShape" | ||
self.cls = TestIsInfOp | ||
self.inputs = [{ | ||
"x_shape": [1], | ||
}, { | ||
"x_shape": [1024], | ||
}, { | ||
"x_shape": [1, 2048], | ||
}, { | ||
"x_shape": [1, 1, 1], | ||
}, { | ||
"x_shape": [32, 64], | ||
}, { | ||
"x_shape": [16, 8, 4, 2], | ||
}, { | ||
"x_shape": [16, 8, 4, 2, 1], | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "float32", | ||
}] | ||
self.attrs = [] | ||
|
||
|
||
class TestIsInfOpDtype(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestIsInfOpDtype" | ||
self.cls = TestIsInfOp | ||
self.inputs = [{ | ||
"x_shape": [32, 64], | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "int32", | ||
}, { | ||
"x_dtype": "int64", | ||
}, { | ||
"x_dtype": "float16", | ||
"max_relative_error": 1e-3 | ||
}, { | ||
"x_dtype": "float32", | ||
}, { | ||
"x_dtype": "float64", | ||
}] | ||
self.attrs = [] | ||
|
||
|
||
if __name__ == "__main__": | ||
TestIsInfOpShape().run() | ||
TestIsInfOpDtype().run() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) 2023 CINN Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import unittest | ||
from op_test import OpTest, OpTestTool | ||
from op_test_helper import TestCaseHelper | ||
import paddle | ||
from cinn.frontend import * | ||
from cinn.common import * | ||
|
||
|
||
@OpTestTool.skip_if(not is_compiled_with_cuda(), | ||
"x86 test will be skipped due to timeout.") | ||
class TestIsNanOp(OpTest): | ||
def setUp(self): | ||
print(f"\nRunning {self.__class__.__name__}: {self.case}") | ||
self.prepare_inputs() | ||
|
||
def prepare_inputs(self): | ||
self.x_np = self.random( | ||
shape=self.case["x_shape"], | ||
dtype=self.case["x_dtype"], | ||
low=-100, | ||
high=100) | ||
|
||
index = np.random.randint(0, len(self.x_np)) | ||
nan_data = np.zeros(self.x_np[index].shape, dtype="float") + np.nan | ||
self.x_np[index] = nan_data.astype(self.case["x_dtype"]) | ||
|
||
def build_paddle_program(self, target): | ||
x = paddle.to_tensor(self.x_np, stop_gradient=True) | ||
out = paddle.isnan(x) | ||
|
||
self.paddle_outputs = [out] | ||
|
||
def build_cinn_program(self, target): | ||
builder = NetBuilder("is_nan") | ||
x = builder.create_input( | ||
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"], | ||
"x") | ||
out = builder.is_nan(x) | ||
|
||
prog = builder.build() | ||
|
||
res = self.get_cinn_output(prog, target, [x], [self.x_np], [out]) | ||
|
||
self.cinn_outputs = [res[0]] | ||
|
||
def test_check_results(self): | ||
self.check_outputs_and_grads(all_equal=True) | ||
|
||
|
||
class TestIsNanOpShape(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestIsNanOpShape" | ||
self.cls = TestIsNanOp | ||
self.inputs = [{ | ||
"x_shape": [1], | ||
}, { | ||
"x_shape": [1024], | ||
}, { | ||
"x_shape": [1, 2048], | ||
}, { | ||
"x_shape": [1, 1, 1], | ||
}, { | ||
"x_shape": [32, 64], | ||
}, { | ||
"x_shape": [16, 8, 4, 2], | ||
}, { | ||
"x_shape": [16, 8, 4, 2, 1], | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "float32", | ||
}] | ||
self.attrs = [] | ||
|
||
|
||
class TestIsNanOpDtype(TestCaseHelper): | ||
def init_attrs(self): | ||
self.class_name = "TestIsNanOpDtype" | ||
self.cls = TestIsNanOp | ||
self.inputs = [{ | ||
"x_shape": [32, 64], | ||
}] | ||
self.dtypes = [{ | ||
"x_dtype": "int32", | ||
}, { | ||
"x_dtype": "int64", | ||
}, { | ||
"x_dtype": "float16", | ||
"max_relative_error": 1e-3 | ||
}, { | ||
"x_dtype": "float32", | ||
}, { | ||
"x_dtype": "float64", | ||
}] | ||
self.attrs = [] | ||
|
||
|
||
if __name__ == "__main__": | ||
TestIsNanOpShape().run() | ||
TestIsNanOpDtype().run() |