-
Notifications
You must be signed in to change notification settings - Fork 0
/
mpox-seek
executable file
·1175 lines (1049 loc) · 48.5 KB
/
mpox-seek
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# -*- coding: UTF-8 -*-
"""
ABOUT: This is the main entry for the pipeline.
REQUIRES:
- python>=3.6
- snakemake (recommended>=6.0.0 and <8.0.0)
- singularity (recommended==latest)
DISCLAIMER:
PUBLIC DOMAIN NOTICE
NIAID Collaborative Bioinformatics Resource (NCBR)
National Institute of Allergy and Infectious Diseases (NIAID)
This software/database is a "United States Government Work" under
the terms of the United States Copyright Act. It was written as
part of the author's official duties as a United States Government
employee and thus cannot be copyrighted. This software is freely
available to the public for use.
Although all reasonable efforts have been taken to ensure the
accuracy and reliability of the software and data, NCBR do not and
cannot warrant the performance or results that may be obtained by
using this software or data. NCBR and NIH disclaim all warranties,
express or implied, including warranties of performance,
merchantability or fitness for any particular purpose.
Please cite the author and NIH resources like the "Biowulf Cluster"
in any work or product based on this material.
USAGE:
$ mpox-seek <command> [OPTIONS]
EXAMPLE:
$ mpox-seek run --input *.fastq.gz --output output/
"""
# Python standard library
from __future__ import print_function
from shutil import unpack_archive
import sys, os, subprocess, re, json, textwrap
# 3rd party imports from pypi
import argparse # potential python3 3rd party package, added in python/3.5
# Local imports
from src import version
from src.run import init, setup, bind, dryrun, runner
from src.download import main as installer
from src.shells import bash
from src.utils import (
Colors,
cat,
check_cache,
err,
exists,
fatal,
permissions,
require,
valid_directory
)
# Pipeline Metadata
__version__ = version
__authors__ = 'Skyler Kuhn'
__email__ = '[email protected]'
__home__ = os.path.dirname(os.path.abspath(__file__))
_name = os.path.basename(sys.argv[0])
_description = 'A Streamlined ONT Monkeypox Pipeline'
def unlock(sub_args):
"""Unlocks a previous runs output directory. If snakemake fails ungracefully,
it maybe required to unlock the working directory before proceeding again.
This is rare but it does occasionally happen. Maybe worth add a --force
option to delete the '.snakemake/' directory in the future.
@param sub_args <parser.parse_args() object>:
Parsed arguments for unlock sub-command
"""
print("Unlocking the pipeline's output directory...")
outdir = sub_args.output
try:
unlock_output = subprocess.check_output([
'snakemake', '--unlock',
'--cores', '1',
'--configfile=config.json'
], cwd = outdir,
stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:
# Unlocking process returned a non-zero exit code
sys.exit("{}\n{}".format(e, e.output))
print("Successfully unlocked the pipeline's working directory!")
def run(sub_args):
"""Initialize, setup, and run the pipeline.
Calls initialize() to create output directory and copy over pipeline resources,
setup() to create the pipeline config file, dryrun() to ensure their are no issues
before running the pipeline, and finally run() to execute the Snakemake workflow.
@param sub_args <parser.parse_args() object>:
Parsed arguments for run sub-command
"""
# Step 0. Check for required dependencies
# The pipelines has only two requirements:
# (snakemake and singularity) OR --use-conda
# (snakemake and conda)
if sub_args.use_conda:
require(['snakemake', 'conda'], ['snakemake', 'conda'])
else:
require(['snakemake', 'singularity'], ['snakemake', 'singularity'])
# Step 1. Initialize working directory,
# copy over required resources to run
# the pipeline
git_repo = __home__
input_files = init(
repo_path = git_repo,
output_path = sub_args.output,
links = sub_args.input
)
# Step 2. Setup pipeline for execution,
# dynamically create config.json config
# file from user inputs and base config
# templates. Also override path of any
# reference files from default in the
# OpenOmics shared group area to base
# path provided by user via the option
# --resource-bundle PATH
config = setup(sub_args,
ifiles = input_files,
repo_path = git_repo,
output_path = sub_args.output,
resource_bundle = sub_args.resource_bundle
)
# Step 3. Resolve docker/singularity bind
# paths from the config file.
bindpaths = bind(
sub_args,
config = config
)
config['bindpaths'] = bindpaths
if sub_args.additional_strains:
# Use user provided genome sequences
# of additional mpox strains/isolates
config['references']['additional_mpox_strains'] = sub_args.additional_strains
# Step 4. Save config to output directory
with open(os.path.join(sub_args.output, 'config.json'), 'w') as fh:
json.dump(config, fh, indent = 4, sort_keys = True)
# Optional Step: Dry-run pipeline
if sub_args.dry_run:
# Dryrun pipeline
dryrun_output = dryrun(outdir = sub_args.output) # python3 returns byte-string representation
print("\nDry-running {} pipeline:\n{}".format(_name, dryrun_output.decode("utf-8")))
sys.exit(0)
# Step 5. Orchestrate pipeline execution,
# run pipeline in locally on a compute node
# for debugging purposes or submit the master
# job to the job scheduler, SLURM, and create
# logging file
if not exists(os.path.join(sub_args.output, 'logfiles')):
# Create directory for logfiles
os.makedirs(os.path.join(sub_args.output, 'logfiles'))
if sub_args.mode == 'local':
log = os.path.join(sub_args.output, 'logfiles', 'snakemake.log')
else:
log = os.path.join(sub_args.output, 'logfiles', 'master.log')
logfh = open(log, 'w')
mjob = runner(mode = sub_args.mode,
outdir = sub_args.output,
# additional_bind_paths = all_bind_paths,
alt_cache = sub_args.singularity_cache,
threads = int(sub_args.threads),
jobname = sub_args.job_name,
submission_script=os.path.join(__home__, 'src', 'run.sh'),
logger = logfh,
additional_bind_paths = ",".join(bindpaths),
tmp_dir = sub_args.tmp_dir,
)
# Step 6. Wait for subprocess to complete,
# this is blocking and not asynchronous
if not sub_args.silent:
print("\nRunning {} pipeline in '{}' mode...".format(_name, sub_args.mode))
mjob.wait()
logfh.close()
# Step 7. Relay information about submission
# of the master job or the exit code of the
# pipeline that ran in local mode
if sub_args.mode == 'local':
if int(mjob.returncode) == 0:
print('{} pipeline has successfully completed'.format(_name))
else:
fatal('{} pipeline failed. Please see error(s) above for more information.'.format(_name))
elif sub_args.mode == 'slurm':
jobid = open(os.path.join(sub_args.output, 'logfiles', 'mjobid.log')).read().strip()
if not sub_args.silent:
if int(mjob.returncode) == 0:
print('Successfully submitted master job: ', end="")
else:
fatal('Error occurred when submitting the master job.')
print(jobid)
def install(sub_args):
"""Downloads resource bundle locally in parallel chunks.
Reference files will be pulled from chunks defined in
'config/install.json' onto the local filesystem. This
function is a wrapper to 'src/download.py'. Please see
that script for more information.
@param sub_args <parser.parse_args() object>:
Parsed arguments for unlock sub-command
"""
# Read in config file for install
with open(
os.path.join(__home__, 'config', 'install.json')
) as fh:
install_config = json.load(fh)
content = [
f \
for f in install_config['install'] \
if install_config['install'][f].keys()
]
if not content:
print(
'Nothing to download! The pipeline is setup and ready to run.',
'\nThis pipeline already has all of its references bundled here:',
'\n • {0}'.format(os.path.join(__home__, 'resources'))
)
sys.exit(0)
# Try to install any missing targets
download_links = []
md5_checksums = []
for target in install_config['install']:
download_links = list(install_config['install'][target].keys())
md5_checksums = list(install_config['install'][target].values())
# Set missing required options
# for src/download.py, need to
# pass links, MD5 checksums and
# the output directory
sub_args.input = download_links
sub_args.md5 = md5_checksums
sub_args.output = sub_args.ref_path
# Pass options to download.py
installer(sub_args)
# Concatenate the locally
# download file chunks to
# restore tarball and then
# extract the archive
if not sub_args.dry_run:
for target in install_config['install']:
# Gather all chunks
download_links = list(install_config['install'][target].keys())
local_chunks = [
os.path.join(sub_args.ref_path, f.split('/')[-1])
for f in download_links
]
# Restore the tarball
print('Merging chunks... {0}'.format(','.join(local_chunks)))
tarball = cat(
local_chunks,
os.path.join(
sub_args.ref_path,
'merged_chunks.tar.gz'
)
)
# Delete local chunks
# to reduce diskspace
# footprint
for f in local_chunks:
try:
os.remove(f)
except OSError:
err('Warning: failed to remove local download chunk... {}'.format(f))
# Extract the tarball
print('Extracting tarball... {0}'.format(tarball))
unpack_archive(tarball, sub_args.ref_path)
# Delete tarball to
# reduce diskspace
# footprint
try:
os.remove(tarball)
except OSError:
err('Warning: failed to resource bundle tarball... {}'.format(tarball))
def cache(sub_args):
"""Caches remote software containers stored on DockerHub.
Local SIFs will be created from images defined in 'config/containers/images.json'.
@param sub_args <parser.parse_args() object>:
Parsed arguments for unlock sub-command
"""
# Check for dependencies
require(['singularity'], ['singularity'])
sif_cache = sub_args.sif_cache
# Get absolute PATH to templates in exome-seek git repo
repo_path = os.path.dirname(os.path.abspath(__file__))
images = os.path.join(repo_path, 'config','containers.json')
# Create image cache
if not exists(sif_cache):
# Pipeline output directory does not exist on filesystem
os.makedirs(sif_cache)
elif exists(sif_cache) and os.path.isfile(sif_cache):
# Provided Path for pipeline output directory exists as file
raise OSError("""\n\tFatal: Failed to create provided sif cache directory!
User provided --sif-cache PATH already exists on the filesystem as a file.
Please {} cache again with a different --sif-cache PATH.
""".format(_name)
)
# Check if local SIFs already exist on the filesystem
with open(images, 'r') as fh:
data = json.load(fh)
pull = []
for image, uri in data['images'].items():
sif = os.path.join(sif_cache, '{}.sif'.format(os.path.basename(uri).replace(':', '_')))
if not exists(sif):
# If local sif does not exist on in cache, print warning
# and default to pulling from URI in config/containers.json
print('Image will be pulled from "{}".'.format(uri), file=sys.stderr)
pull.append(uri)
if not pull:
# Nothing to do!
print('Singularity image cache is already up to update!')
else:
# There are image(s) that need to be pulled
if not sub_args.dry_run:
# container cache script: src/cache.sh
# Quote user provided values to avoid shell injections
username = os.environ.get('USER', os.environ.get('USERNAME'))
exitcode = bash(
str(os.path.join(repo_path, 'src', 'cache.sh')) +
' local ' +
" -s '{}' ".format(sif_cache) +
" -i '{}' ".format(','.join(pull)) +
" -t '{0}/{1}/.singularity/' ".format(sif_cache, username)
)
# Check exitcode of caching script
if exitcode != 0:
fatal('Fatal: Failed to pull all containers. Please try again!')
print('Done: sucessfully pulled all software containers!')
def parsed_arguments(name, description):
"""Parses user-provided command-line arguments. Requires argparse and textwrap
package. argparse was added to standard lib in python 3.5 and textwrap was added
in python 3.5. To create custom help formatting for subparsers a docstring is
used create the help message for required options. argparse does not support named
subparser groups, which is normally what would be used to accomphish this reformatting.
As so, the help message for require options must be suppressed. If a new required arg
is added to a subparser, it must be added to the docstring and the usage statement
also must be updated.
@param name <str>:
Name of the pipeline or command-line tool
@param description <str>:
Short description of pipeline or command-line tool
"""
# Add styled name and description
c = Colors
styled_name = "{0}{1}{2}mpox-seek{3}".format(c.bold, c.bg_black, c.cyan, c.end)
description = "{0}{1}{2}".format(c.bold, description, c.end)
# Create a top-level parser
parser = argparse.ArgumentParser(description = '{}: {}'.format(styled_name, description))
# Adding Verison information
parser.add_argument('--version', action = 'version', version='%(prog)s {}'.format(__version__))
# Create sub-command parser
subparsers = parser.add_subparsers(help='List of available sub-commands')
# Sub-parser for the "run" sub-command
# Grouped sub-parser arguments are currently
# not supported: https://bugs.python.org/issue9341
# Here is a work around to create more useful help message for named
# options that are required! Please note: if a required arg is added the
# description below should be updated (i.e. update usage and add new option)
required_run_options = textwrap.dedent("""\
{0}: {1}
{3}{4}Synopsis:{5}
$ {2} run [--help] \\
[--dry-run] [--job-name JOB_NAME] [--mode {{slurm,local}}] \\
[--sif-cache SIF_CACHE] [--singularity-cache SINGULARITY_CACHE] \\
[--silent] [--threads THREADS] [--tmp-dir TMP_DIR] \\
[--resource-bundle RESOURCE_BUNDLE] [--use-conda] \\
[--conda-env-name CONDA_ENV_NAME] \\
[--additional-strains ADDITIONAL_STRAINS] \\
[--batch-id BATCH_ID] \\
[--bootstrap-trees] \\
[--plot-coverage] \\
--input INPUT [INPUT ...] \\
--output OUTPUT
Optional arguments are shown in square brackets above.
{3}{4}Description:{5}
To run the slim oxford nanpore monkeypox pipeline with your data raw data,
please provide a space seperated list of FastQ (globbing is supported) and an
output directory to store results.
{3}{4}Required arguments:{5}
--input INPUT [INPUT ...]
Input Oxford Nanopore FastQ file(s) to process. One
or more FastQ files can be provided. Multiple input
FastQ files should be seperated by a space. Globbing
for multiple files is also supported.
Example: --input .tests/*.fastq.gz
--output OUTPUT
Path to an output directory. This location is where
the pipeline will create all of its output files, also
known as the pipeline's working directory. If the user
provided working directory has not been initialized,
it will be created automatically.
Example: --output mpox_output
{3}{4}Analysis options:{5}
--additional-strains ADDITIONAL_STRAINS
Genomic fasta file of additional monekypox strains to
add to the phylogenetic tree. By default, a phylogenetic
tree is build with your input samples and the reference
genome, see "mpox_pcr_sequence" in "config/genome.json"
for the path to this file. When this option is provided
a phylogenetic tree containing your input samples, the
reference genome, and any additional monkeypox strain
the provided file are built. We have provided a genomic
fasta file of additional strains with mpox-seek. Please
see "resources/mpox_additional_strains.fa.gz" for more
information. This file can be provided directly to this
option. We highly recommended using this option with
the "--batch-id" option below to avoid any files from
being overwritten between runs of the pipeline. For more
information about the "--batch-id" option, please see
the option listed below.
Example:
--additional-strains resources/mpox_additional_strains.fa.gz
--batch-id BATCH_ID
Unique identifer to associate with a batch of samples.
This option can be provided to ensure that project-level
output files are not over-written between runs of the
pipeline. As so, it is good to always provide this option.
By default, project-level files in the "project" will get
over-written between pipeline runs if this option is not
provided. Any identifer provided to this option will be
used to create a sub-directory in the project folder.
This ensures project-level files (which are unique) will
not get over-written as new data/samples are processed.
A unique batch id should be provided between runs. This
batch id should be composed of alphanumeric characters
and it should not contain a white space or tab characters.
Here is a list of valid or acceptable characters: "aA-Zz",
"0-9", "-", "_".
Example: --batch-id "2024-04-01"
--bootstrap-trees
Computes branch support by bootstraping data. If this flag
is provided, raxml-ng is run in an all-in-one (ML search +
bootstrapping) mode via its '--all' option. Branch supports,
calculated by bootstrapping, will be added to the best
scoring tree.
Example: --bootstrap-trees
--plot-coverage
Plots coverage of along the reference genome. If this flag
is provided, per-sample plots of raw coverage will be made.
This plot can be useful for identifying samples or regions
of the reference genome with low coverage.
Example: --plot-coverage
{3}{4}Orchestration options:{5}
--mode {{local,slurm}}
Method of execution. Defines the mode of execution.
Vaild options for this mode include: local or slurm.
Additional modes of exection are coming soon, default:
local.
Here is a brief description of each mode:
• local: uses local method of execution. local runs
will run serially on compute instance. This is useful
for testing, debugging, or when a users does not have
access to a high performance computing environment.
If this option is not provided, it will default to a
this mode of execution. This is the correct mode of
execution if you are running the pipeline on a laptop
or a local desktop computer.
• slurm: uses slurm execution backend. This method
will submit jobs to a HPC cluster using sbatch. It is
recommended running the pipeline in this mode as it
will be significantly faster; however, this mode of
execution can only be provided if the pipeline is
being run from a SLURM HPC cluster. By default, the
pipeline runs in a local mode of execution.
Example: --mode local
--job-name JOB_NAME
Overrides the name of the pipeline's master job. When
submitting the pipeline to a jobscheduler, this option
overrides the default name of the master job. This can
be useful for tracking the progress or status of a run,
default: pl:{2}.
Example: --job-name {2}_03-14.1592
--dry-run
Does not execute anything. Only displays what steps in
the pipeline remain or will be run.
Example: --dry-run
--silent
Silence standard output. This will reduces the amount
of information displayed to standard output when the
master job is submitted to the job scheduler. Only the
job id of the master job is returned.
Example: --silent
--singularity-cache SINGULARITY_CACHE
Overrides the $SINGULARITY_CACHEDIR variable. Images
from remote registries are cached locally on the file
system. By default, the singularity cache is set to:
'/path/to/output/directory/.singularity/'. Please note
that this cache cannot be shared across users.
Example: --singularity-cache /data/$USER
--sif-cache SIF_CACHE
Path where a local cache of SIFs are stored. This cache
can be shared across users if permissions are properly
setup. If a SIF does not exist in the SIF cache, the
image will be pulled from Dockerhub. {2} cache
sub command can be used to create a local SIF cache.
Please see {2} cache for more information.
Example: --sif-cache /data/$USER/sifs/
--threads THREADS
Max number of threads for local mode processes. It is
recommended setting this vaule to the maximum number
of CPUs available on the host machine, default: 2.
Example: --threads: 16
--tmp-dir TMP_DIR
Path on the file system for writing temporary output
files. By default, the temporary directory is set to
'/lscratch/$SLURM_JOBID' for backwards compatibility
with the NIH's Biowulf cluster; however, if you are
running the pipeline on another cluster, this option
will need to be specified. Ideally, this path should
point to a dedicated location on the filesystem for
writing tmp files. On many systems, this location is
set to somewhere in /scratch. If you need to inject a
variable into this string that should NOT be expanded,
please quote this options value in single quotes.
Example: --tmp-dir '/scratch/$USER/'
--resource-bundle RESOURCE_BUNDLE
Path to a resource bundle downloaded with the install
sub command. The resource bundle contains the set of
required reference files for processing any data. The
path provided to this option will be the path to the
{2} directory that was created when running the
{2} install sub command.
Example: --resource-bundle /data/$USER/refs/{2}
--use-conda
Use Conda/Mamba instead of Singularity. By default,
the pipeline uses singularity for handling required
software dependencies. This option overrides that be-
havior, and it will use Conda or mamba instead. Please
note that conda or mamba must be in your $PATH prior
to running the pipeline. This option will build an env
on the fly prior to the pipeline's execution. As so,
this step requires internet access. To run {2} in
an offline mode with conda, please see the option
below.
Example: --use-conda
--conda-env-name CONDA_ENV_NAME
Use an existing conda environment. This option allows
{2} to run with conda in an offline mode. If you are
using conda without this option, the pipeline will build
a conda environment on the fly prior to the pipeline's
execution. Building a conda environment can sometimes be
slow as it downloads dependencies from the internet, so
it may make sense to build it once and re-use it. If you
have already built a named conda environment with the
supplied yaml file, then you can directly use it with
this option. Please provide the name of the conda env
that was specifically built for the {2} pipeline. To
create a reusable conda/mamba environment with the
name '{2}', please run the following mamba command:
'mamba env create -f workflow/envs/mpox.yaml'.
Example: --conda-env-name mpox-seek
{3}{4}Misc Options:{5}
-h, --help Show usage information, help message, and exit.
Example: --help
""".format(styled_name, description, name, c.bold, c.url, c.end, c.italic))
# Display example usage in epilog
run_epilog = textwrap.dedent("""\
{2}{3}Example:{4}
# Step 1.) Activate your conda environment,
# assumes its installed in home directory.
# May need to change this depending on
# where you installed conda/mamba.
. ${{HOME}}/conda/etc/profile.d/conda.sh
conda activate snakemake
# Step 2A.) Dry-run the pipeline, this
# will show what steps will run.
./{0} run --input .tests/*.fastq.gz \\
--output mpox-seek_output \\
--additional-strains resources/mpox_additional_strains.fa.gz \\
--batch-id "$(date '+%Y-%m-%d-%H-%M')" \\
--bootstrap-trees \\
--mode local \\
--use-conda \\
--conda-env-name mpox-seek \\
--dry-run
# Step 2B.) Run the {0} pipeline,
# Create a tree with additional
# strains of interest and adds a
# unique batch identifer to project-
# level files to ensure no over
# writting of files occurs, format:
# YYYY-MM-DD-HH-MM.
./{0} run --input .tests/*.fastq.gz \\
--output mpox-seek_output \\
--additional-strains resources/mpox_additional_strains.fa.gz \\
--batch-id "$(date '+%Y-%m-%d-%H-%M')" \\
--bootstrap-trees \\
--use-conda \\
--conda-env-name mpox-seek \\
--mode local
{2}{3}Version:{4}
{1}
""".format(name, __version__, c.bold, c.url, c.end))
# Supressing help message of required args to overcome no sub-parser named groups
subparser_run = subparsers.add_parser('run',
help = 'Run the {} pipeline with input files.'.format(name),
usage = argparse.SUPPRESS,
formatter_class=argparse.RawDescriptionHelpFormatter,
description = required_run_options,
epilog = run_epilog,
add_help=False
)
# Required Arguments
# Input FastQ files
subparser_run.add_argument(
'--input',
# Check if the file exists and if it is readable
type = lambda file: permissions(parser, file, os.R_OK),
required = True,
nargs = '+',
help = argparse.SUPPRESS
)
# Output Directory, i.e
# working directory
subparser_run.add_argument(
'--output',
type = lambda option: os.path.abspath(os.path.expanduser(option)),
required = True,
help = argparse.SUPPRESS
)
# Analysis options
subparser_run.add_argument(
'--additional-strains',
# Check if the file exists and if it is readable
type = lambda file: permissions(parser, file, os.R_OK),
required = False,
default = None,
help = argparse.SUPPRESS
)
# Batch Identifer
subparser_run.add_argument(
'--batch-id',
type = lambda option: valid_directory(parser, option.replace(' ', '_')),
required = False,
default = '',
help = argparse.SUPPRESS
)
# Add branch support/confidence values
# to best tree via bootstrapping
subparser_run.add_argument(
'--bootstrap-trees',
action = 'store_true',
required = False,
default = False,
help = argparse.SUPPRESS
)
# Plot coverage of samples
subparser_run.add_argument(
'--plot-coverage',
action = 'store_true',
required = False,
default = False,
help = argparse.SUPPRESS
)
# Optional Arguments
# Add custom help message
subparser_run.add_argument(
'-h', '--help',
action='help',
help=argparse.SUPPRESS
)
# Orchestration Options
# Execution Method, run locally
# on a compute node or submit to
# a supported job scheduler, etc.
subparser_run.add_argument(
'--mode',
type = str,
required = False,
default = "local",
choices = ['slurm', 'local'],
help = argparse.SUPPRESS
)
# Name of master job
subparser_run.add_argument(
'--job-name',
type = str,
required = False,
default = 'pl:{}'.format(name),
help = argparse.SUPPRESS
)
# Dry-run, does not execute the
# workflow, prints what steps remain
subparser_run.add_argument(
'--dry-run',
action = 'store_true',
required = False,
default = False,
help = argparse.SUPPRESS
)
# Silent output mode
subparser_run.add_argument(
'--silent',
action = 'store_true',
required = False,
default = False,
help = argparse.SUPPRESS
)
# Singularity cache directory,
# default uses output directory
subparser_run.add_argument(
'--singularity-cache',
type = lambda option: check_cache(parser, os.path.abspath(os.path.expanduser(option))),
required = False,
help = argparse.SUPPRESS
)
# Local SIF cache directory,
# default pull from Dockerhub
subparser_run.add_argument(
'--sif-cache',
type = lambda option: os.path.abspath(os.path.expanduser(option)),
required = False,
help = argparse.SUPPRESS
)
# Base directory to write
# temporary/intermediate files
subparser_run.add_argument(
'--tmp-dir',
type = str,
required = False,
default = '/lscratch/$SLURM_JOBID/',
help = argparse.SUPPRESS
)
# Number of threads for the
# pipeline's main proceess
# This is only applicable for
# local rules or when running
# in local mode.
subparser_run.add_argument(
'--threads',
type = int,
required = False,
default = 2,
help = argparse.SUPPRESS
)
# Output Directory of downloaded
# resource bundle, see the install
# sub command for more information
# on how to download any required
# references files locally.
subparser_run.add_argument(
'--resource-bundle',
type = lambda option: os.path.abspath(os.path.expanduser(option)),
required = False,
default = None,
help = argparse.SUPPRESS
)
# Use Conda instead of singularity,
# will build an env on the fly
subparser_run.add_argument(
'--use-conda',
action = 'store_true',
required = False,
default = False,
help = argparse.SUPPRESS
)
# Use an existing conda env,
# runs conda in offline mode
subparser_run.add_argument(
'--conda-env-name',
type = str,
required = False,
default = '',
help = argparse.SUPPRESS
)
# Sub-parser for the "unlock" sub-command
# Grouped sub-parser arguments are currently
# not supported: https://bugs.python.org/issue9341
# Here is a work around to create more useful help message for named
# options that are required! Please note: if a required arg is added the
# description below should be updated (i.e. update usage and add new option)
required_unlock_options = textwrap.dedent("""\
{0}: {1}
{3}{4}Synopsis:{5}
$ {2} unlock [-h] --output OUTPUT
Optional arguments are shown in square brackets above.
{3}{4}Description:{5}
If the pipeline fails ungracefully, it maybe required to unlock
the working directory before proceeding again. Please verify that
the pipeline is not running before running this command. If the
pipeline is still running, the workflow manager will report the
working directory is locked. This is normal behavior. Do NOT run
this command if the pipeline is still running.
{3}{4}Required arguments:{5}
--output OUTPUT Path to a previous run's output directory
to unlock. This will remove a lock on the
working directory. Please verify that the
pipeline is not running before running
this command.
Example: --output /data/$USER/output
{3}{4}Misc Options:{5}
-h, --help Show usage information, help message,
and exit.
Example: --help
""".format(styled_name, description, name, c.bold, c.url, c.end))
# Display example usage in epilog
unlock_epilog = textwrap.dedent("""\
{2}{3}Example:{4}
# Unlock output directory of pipeline
{0} unlock --output /data/$USER/output
{2}{3}Version:{4}
{1}
""".format(name, __version__, c.bold, c.url, c.end))
# Supressing help message of required args to overcome no sub-parser named groups
subparser_unlock = subparsers.add_parser(
'unlock',
help = 'Unlocks a previous runs output directory.',
usage = argparse.SUPPRESS,
formatter_class=argparse.RawDescriptionHelpFormatter,
description = required_unlock_options,
epilog = unlock_epilog,
add_help = False
)
# Required Arguments
# Output Directory (analysis working directory)
subparser_unlock.add_argument(
'--output',
type = str,
required = True,
help = argparse.SUPPRESS
)
# Add custom help message
subparser_unlock.add_argument(
'-h', '--help',
action='help',
help=argparse.SUPPRESS
)
# Sub-parser for the "install" sub-command
# Grouped sub-parser arguments are
# not supported: https://bugs.python.org/issue9341
# Here is a work around to create more useful help message for named
# options that are required! Please note: if a required arg is added the
# description below should be updated (i.e. update usage and add new option)
required_install_options = textwrap.dedent("""\
{0}: {1}
{3}{4}Synopsis:{5}
$ {2} install [-h] [--dry-run] \\
[--force] [--threads] \\
--ref-path REF_PATH
Optional arguments are shown in square brackets above.
{3}{4}Description:{5}
The pipeline uses a set of reference files to process data.
These reference files are required and need to be available on
the local file system prior to execution. This command can be
used to download the pipeline's required reference files.
Please Note: The resource bundle requires about 2GB of avail-
able disk space. If you are running the pipeline on the Biowulf
cluster, you do NOT need to download the pipeline's resource
bundle. It is already accessible to all HPC users.
{3}{4}Required arguments:{5}
--ref-path REF_PATH Path where the resource bundle will be
downloaded. Any resouces defined in the
'config/install.json' will be pulled on
to the local filesystem. After the files
have been downloaded, a new directory
with the name {2} will be created.
It contains all the required reference
files of the pipeline. The path to this
new directory can be passed to the run
sub command's --resource-bundle option.
Please see the run sub command for more
information.
Example: --ref-path /data/$USER/refs
{3}{4}Orchestration options:{5}
--dry-run Does not execute anything. Only displays
what remote resources would be pulled.
Example: --dry-run
--force Force downloads all files. By default, any
files that do not exist locally are pulled;
however if a previous instance of an install
did not exit gracefully, it may be necessary
to forcefully re-download all the files.
Example: --force
--threads THREADS Number of threads to use for concurrent file
downloads, default: 2.
Example: --threads 12
{3}{4}Misc Options:{5}
-h, --help Show usage information, help message,
and exits.
Example: --help
""".format(styled_name, description, name, c.bold, c.url, c.end))
# Display example usage in epilog
install_epilog = textwrap.dedent("""\
{2}{3}Example:{4}
# Dry-run download of the resource bundle
{0} install --ref-path /data/$USER/ref \\
--force \\
--dry-run \\
--threads 12
# Download the resource bundle
{0} install --ref-path /data/$USER/ref \\
--force \\
--threads 12
{2}{3}Version:{4}
{1}
""".format(name, __version__, c.bold, c.url, c.end))
# Supressing help message of required args
# to overcome no sub-parser named groups
subparser_install = subparsers.add_parser(
'install',
help = 'Download reference files locally.',
usage = argparse.SUPPRESS,
formatter_class=argparse.RawDescriptionHelpFormatter,
description = required_install_options,
epilog = install_epilog,
add_help = False
)
# Required Arguments
# Output Directory where file will be downloaded
subparser_install.add_argument(
'--ref-path',