Skip to content

Commit

Permalink
Improved plotting and random number generation
Browse files Browse the repository at this point in the history
  • Loading branch information
etpeterson committed Nov 5, 2023
1 parent 04e64ac commit 254f053
Show file tree
Hide file tree
Showing 5 changed files with 47 additions and 13 deletions.
2 changes: 2 additions & 0 deletions .github/workflows/analysis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -61,3 +61,5 @@ jobs:
f_limited.pdf
Dp_limited.pdf
durations.pdf
curve_plot.pdf
fitted_curves.pdf
18 changes: 15 additions & 3 deletions conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,11 +78,20 @@ def save_file(request):
# print(filename)
# filename.unlink(missing_ok=True)
filename = filename.as_posix()

data = data_list(request.config.getoption("--dataFile")) # TODO: clean up this hacky way to get bvalues
[_, bvalues, _] = next(data)
bvalue_string = ["bval_" + str(bvalue) for bvalue in bvalues]
# bvalue_string = ["b_0.0","b_1.0","b_2.0","b_5.0","b_10.0","b_20.0","b_30.0","b_50.0","b_75.0","b_100.0","b_150.0","b_250.0","b_350.0","b_400.0","b_550.0","b_700.0","b_850.0","b_1000.0"]

with open(filename, "w") as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerow(("Algorithm", "Region", "SNR", "index", "f", "Dp", "D", "f_fitted", "Dp_fitted", "D_fitted"))
writer.writerow(("Algorithm", "Region", "SNR", "index", "f", "Dp", "D", "f_fitted", "Dp_fitted", "D_fitted", *bvalue_string))
yield writer
# writer.writerow(["", datetime.datetime.now()])
return filename
else:
yield None
# return filename

@pytest.fixture(scope="session")
def save_duration_file(request):
Expand All @@ -96,8 +105,11 @@ def save_duration_file(request):
with open(filename, "w") as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerow(("Algorithm", "Region", "SNR", "Duration [us]", "Count"))
yield writer
# writer.writerow(["", datetime.datetime.now()])
return filename
else:
yield None
# return filename

@pytest.fixture(scope="session")
def rtol(request):
Expand Down
11 changes: 11 additions & 0 deletions tests/IVIMmodels/unit_tests/analyze.r
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ if (runPrediction) {
ivim_decay <- function(f, D, Dp, bvalues) {
return(f*exp(-Dp*bvalues) + (1-f)*exp(-D*bvalues))
}
#TODO: read bvalues from file
bvalues <- c(0.0, 1.0, 2.0, 5.0, 10.0, 20.0, 30.0, 50.0, 75.0, 100.0, 150.0, 250.0, 350.0, 400.0, 550.0, 700.0, 850.0, 1000.0)

generate_curves <- function(data, bvalues, appended_string) {
Expand All @@ -82,3 +83,13 @@ data_curves_restricted <- cbind(curves_restricted, signal_fitted=curves_restrict
curve_plot <- ggplot(data_curves_restricted, aes(x=bvalue)) + facet_grid(Region ~ SNR) + geom_line(alpha=0.2, aes(y=signal_fitted, group=interaction(Algorithm, index), color=Algorithm)) + geom_line(aes(y=signal)) + ylim(0, 1) + ylab("Signal (a.u.)")
print(curve_plot)
ggsave("curve_plot.pdf", plot=curve_plot, width = 30, height = 30, units = "cm")


data_points_restricted <- data_restricted[data_restricted$index==0,]
data_points_restricted <- pivot_longer(data_points_restricted, starts_with("bval_"), names_to="bvalue", values_to="fitted_data", names_prefix="bval_", names_transform=list(bvalue = as.numeric))
# data_curves_restricted_idx0 <- data_curves_restricted[data_curves_restricted$index==0,]
data_points_restricted <- cbind(data_curves_restricted[data_curves_restricted$index==0,], fitted_data=data_points_restricted$fitted_data)
# fitted_curves <- ggplot(data_points_restricted, aes(x=bvalue)) + facet_grid(Region ~ SNR) + geom_line(alpha=0.5, aes(y=signal_fitted, group=Algorithm, color=Algorithm)) + geom_point(aes(y=fitted_data, group=Algorithm, color=Algorithm)) + ylim(0, 1) + ylab("Signal (a.u.)")
fitted_curves <- ggplot(data_points_restricted, aes(x=bvalue)) + facet_grid(Region ~ SNR) + geom_line(alpha=0.5, aes(y=signal_fitted, group=Algorithm, color=Algorithm)) + geom_point(aes(y=fitted_data, shape="Data")) + ylim(0, 1) + ylab("Signal (a.u.)") + guides(shape = guide_legend("Fitted Data"))
print(fitted_curves)
ggsave("fitted_curves.pdf", plot=fitted_curves, width = 30, height = 30, units = "cm")
17 changes: 10 additions & 7 deletions tests/IVIMmodels/unit_tests/test_ivim_synthetic.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,17 +16,18 @@
@pytest.mark.slow
def test_generated(ivim_algorithm, ivim_data, SNR, rtol, atol, fit_count, rician_noise, save_file, save_duration_file, use_prior):
# assert save_file == "test"
random.seed(42)
rng = np.random.RandomState(42)
# random.seed(42)
S0 = 1
gd = GenerateData()
gd = GenerateData(rng=rng)
name, bvals, data = ivim_data
D = data["D"]
f = data["f"]
Dp = data["Dp"]
fit = OsipiBase(algorithm=ivim_algorithm)
# here is a prior
if use_prior and hasattr(fit, "accepts_priors") and fit.accepts_priors:
prior = [np.random.normal(D, D/3, 10), np.random.normal(f, f/3, 10), np.random.normal(Dp, Dp/3, 10), np.random.normal(1, 1/3, 10)]
prior = [rng.normal(D, D/3, 10), rng.normal(f, f/3, 10), rng.normal(Dp, Dp/3, 10), rng.normal(1, 1/3, 10)]
# prior = [np.repeat(D, 10)+np.random.normal(0,D/3,np.shape(np.repeat(D, 10))), np.repeat(f, 10)+np.random.normal(0,f/3,np.shape(np.repeat(D, 10))), np.repeat(Dp, 10)+np.random.normal(0,Dp/3,np.shape(np.repeat(D, 10))),np.repeat(np.ones_like(Dp), 10)+np.random.normal(0,1/3,np.shape(np.repeat(D, 10)))] # D, f, D*
fit.initialize(prior_in=prior)
time_delta = datetime.timedelta()
Expand All @@ -38,11 +39,13 @@ def test_generated(ivim_algorithm, ivim_data, SNR, rtol, atol, fit_count, rician
start_time = datetime.datetime.now()
[f_fit, Dp_fit, D_fit] = fit.osipi_fit(signal, bvals) #, prior_in=prior
time_delta += datetime.datetime.now() - start_time
if save_file:
save_results(save_file, ivim_algorithm, name, SNR, idx, [f, Dp, D], [f_fit, Dp_fit, D_fit])
if save_file is not None:
save_file.writerow([ivim_algorithm, name, SNR, idx, f, Dp, D, f_fit, Dp_fit, D_fit, *signal])
# save_results(save_file, ivim_algorithm, name, SNR, idx, [f, Dp, D], [f_fit, Dp_fit, D_fit])
npt.assert_allclose([f, Dp, D], [f_fit, Dp_fit, D_fit], rtol, atol)
if save_duration_file:
save_duration(save_duration_file, ivim_algorithm, name, SNR, time_delta, fit_count)
if save_duration_file is not None:
save_duration_file.writerow([ivim_algorithm, name, SNR, time_delta/datetime.timedelta(microseconds=1), fit_count])
# save_duration(save_duration_file, ivim_algorithm, name, SNR, time_delta, fit_count)


def save_results(filename, algorithm, name, SNR, idx, truth, fit):
Expand Down
12 changes: 9 additions & 3 deletions utilities/data_simulation/GenerateData.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,23 @@ class GenerateData:
"""
Generate exponential and linear data
"""
def __init__(self, operator=None):
def __init__(self, operator=None, rng=None):
"""
Parameters
----------
operator : numpy or torch
Must provide mathematical operators
rng : random number generator
Must provide normal() operator
"""
if operator is None:
self._op = np
else:
self._op = operator
if rng is None:
self._rng = self._op
else:
self._rng = rng

def ivim_signal(self, D, Dp, f, S0, bvalues, snr=None, rician_noise=False):
"""
Expand Down Expand Up @@ -91,9 +97,9 @@ def add_noise(self, real_signal, snr=None, rician_noise=True, imag_signal=None):
real_noise = self._op.zeros_like(real_signal)
imag_noise = self._op.zeros_like(real_signal)
if snr is not None:
real_noise = self._op.random.normal(0, 1 / snr, real_signal.shape)
real_noise = self._rng.normal(0, 1 / snr, real_signal.shape)
if rician_noise:
noisy_data = self._op.sqrt(self._op.power(real_signal, 2) + self._op.power(imag_signal, 2))
imag_noise = self._rng.normal(0, 1 / snr, imag_signal.shape)
noisy_data = self._op.sqrt(self._op.power(real_signal + real_noise, 2) + self._op.power(imag_signal + imag_noise, 2))
return noisy_data

Expand Down

0 comments on commit 254f053

Please sign in to comment.