Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update ModelOpt Width Pruning example defaults #10902

Merged
merged 4 commits into from
Oct 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 11 additions & 8 deletions examples/nlp/language_modeling/conf/megatron_gpt_prune.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -23,19 +23,22 @@ trainer:
model:
tensor_model_parallel_size: 1 # Pruning currently only supports tensor_model_parallel_size=1
pipeline_model_parallel_size: 1
restore_from_path: llama3.1-8b-base.nemo # Nemo file path
sequence_parallel: false # Sequence parallelism is not supported with pipeline parallelism
restore_from_path: llama3.1-8b-instruct.nemo # Nemo file path

## Activation Checkpoint
activations_checkpoint_granularity: null # 'selective' or 'full'
activations_checkpoint_method: null # 'uniform', 'block', not used with 'selective'

prune:
calib_dataset: cnn_dailymail # wikitext, cnn_dailymail, or a local dataset
num_calib_size: 512 # number of samples used for calibration
ffn_hidden_size: 3584 # ffn_hidden_size in the pruned model, ffn_hidden_size // 4
num_attention_heads: 8 # num_attention_heads in the pruned model, num_attention_heads // 4
num_query_groups: 4 # num_query_groups in the pruned model, num_query_groups // 2
hidden_size: 2048 # hidden_size in the pruned model, hidden_size // 2
calib_dataset: wikitext # wikitext, cnn_dailymail, or a local dataset
num_calib_size: 1024 # number of samples used for calibration
# pruning constraints (null means no pruning)
ffn_hidden_size: 9216 # ffn_hidden_size in the pruned model
num_attention_heads: null # num_attention_heads in the pruned model
num_query_groups: null # num_query_groups in the pruned model
hidden_size: 3072 # hidden_size (embedding size) in the pruned model
num_layers: null # num_layers (depth) in the pruned model

export:
save_path: llama3.1-8b-base-pruned.nemo # Path where the pruned model will be saved
save_path: llama3.1-8b-instruct-pruned.nemo # Path where the pruned model will be saved
29 changes: 15 additions & 14 deletions examples/nlp/language_modeling/megatron_gpt_prune.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,23 +36,23 @@
Example usage:
```
python examples/nlp/language_modeling/megatron_gpt_prune.py \
model.restore_from_path=llama3.1-8b-base.nemo \
model.restore_from_path=llama3.1-8b-instruct.nemo \
model.tensor_model_parallel_size=1 \
model.pipeline_model_parallel_size=8 \
trainer.num_nodes=1 \
trainer.precision=bf16 \
trainer.devices=8 \
prune.ffn_hidden_size=3584 \
prune.num_attention_heads=8 \
prune.num_query_groups=4 \
prune.hidden_size=2048 \
export.save_path=llama3.1-8b-base-pruned.nemo
prune.ffn_hidden_size=9216 \
prune.num_attention_heads=null \
prune.num_query_groups=null \
prune.hidden_size=3072 \
export.save_path=llama3.1-8b-instruct-pruned.nemo
```
where tensor_model_parallel_size must be 1 because of the current prune API limitation
"""


def get_calib_data_iter(data="cnn_dailymail", batch_size=64, calib_size=512, max_sequence_length=512):
def get_calib_data_iter(data="wikitext", batch_size=64, calib_size=512, max_sequence_length=512):
if data == "wikitext":
dataset = load_dataset("wikitext", "wikitext-103-v1", split="train")
text_column = "text"
Expand All @@ -73,18 +73,12 @@ def get_calib_data_iter(data="cnn_dailymail", batch_size=64, calib_size=512, max

@hydra_runner(config_path="conf", config_name="megatron_gpt_prune")
def main(cfg) -> None:
if not torch.cuda.is_available():
raise EnvironmentError("GPU is required for the pruning.")

# Overwrite model config with the one from the model checkpoint and apply pruning modifications
model_cfg = load_config(cfg.model.restore_from_path)
model_cfg.update(cfg.model)
model_cfg.name = "modelopt" # Use modelopt transformer spec for pruning

assert cfg.model.tensor_model_parallel_size == 1, "Pruning currently only supports tensor_model_parallel_size=1"
assert (
not hasattr(cfg.model, "sequence_parallel") or not cfg.model.sequence_parallel
), "Pruning currently does not support sequence parallelism"

trainer = Trainer(strategy=NLPDDPStrategy(), **cfg.trainer)
model = MegatronGPTModel.restore_from(
Expand Down Expand Up @@ -112,7 +106,13 @@ def forward_loop(model):
constraints={
"export_config": {
k: cfg.prune.get(k)
for k in ["ffn_hidden_size", "num_attention_heads", "num_query_groups", "hidden_size"]
for k in [
"ffn_hidden_size",
"num_attention_heads",
"num_query_groups",
"hidden_size",
"num_layers",
]
if cfg.prune.get(k) is not None
},
},
Expand All @@ -121,6 +121,7 @@ def forward_loop(model):
)

model_pruned.save_to(cfg.export.save_path)
print(f"Pruned model saved to {cfg.export.save_path}")


if __name__ == '__main__':
Expand Down
Loading