-
Notifications
You must be signed in to change notification settings - Fork 2.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Mistral-NeMo-12B recipe Signed-off-by: Alexandros Koumparoulis <[email protected]> * rename mistral to mistral_7b Signed-off-by: Alexandros Koumparoulis <[email protected]> * include mistral_nemo_12b in __init__ Signed-off-by: Alexandros Koumparoulis <[email protected]> * Apply isort and black reformatting Signed-off-by: akoumpa <[email protected]> * add to __init__ Signed-off-by: Alexandros Koumparoulis <[email protected]> * Apply isort and black reformatting Signed-off-by: akoumpa <[email protected]> * Remove stale imports Signed-off-by: Alexandros Koumparoulis <[email protected]> * TP=2 Signed-off-by: Alexandros Koumparoulis <[email protected]> * remove finetune_reci[e Signed-off-by: Alexandros Koumparoulis <[email protected]> * Rename MistralNeMo2407Config12B to MistralNeMoConfig12B per review's suggestion Signed-off-by: Alexandros Koumparoulis <[email protected]> * update config names in tests Signed-off-by: Alexandros Koumparoulis <[email protected]> * mistral-nemo-12b from llama_8b Signed-off-by: Alexandros Koumparoulis <[email protected]> * TP=2; SP=True Signed-off-by: Alexandros Koumparoulis <[email protected]> * fix overlap value Signed-off-by: Alexandros Koumparoulis <[email protected]> * Apply isort and black reformatting Signed-off-by: akoumpa <[email protected]> * update mistral-nemo-base-12b finetune recipe Signed-off-by: Alexandros Koumparoulis <[email protected]> * Apply isort and black reformatting Signed-off-by: akoumpa <[email protected]> --------- Signed-off-by: Alexandros Koumparoulis <[email protected]> Signed-off-by: akoumpa <[email protected]> Co-authored-by: akoumpa <[email protected]>
- Loading branch information
Showing
9 changed files
with
301 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,285 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
from typing import Callable, Optional | ||
|
||
import nemo_run as run | ||
import pytorch_lightning as pl | ||
import torch | ||
from megatron.core.distributed import DistributedDataParallelConfig | ||
from pytorch_lightning.callbacks.callback import Callback | ||
|
||
from nemo import lightning as nl | ||
from nemo.collections.llm.api import finetune, pretrain | ||
from nemo.collections.llm.gpt.data.mock import MockDataModule | ||
from nemo.collections.llm.gpt.data.squad import SquadDataModule | ||
from nemo.collections.llm.gpt.model.mistral import MistralModel, MistralNeMoConfig12B | ||
from nemo.collections.llm.peft.lora import LoRA | ||
from nemo.collections.llm.recipes.finetune_default import default_finetune_recipe | ||
from nemo.collections.llm.recipes.log.default import default_log, default_resume, tensorboard_logger | ||
from nemo.collections.llm.recipes.optim.adam import distributed_fused_adam_with_cosine_annealing | ||
from nemo.collections.llm.recipes.precision.mixed_precision import bf16_mixed | ||
from nemo.lightning.pytorch.callbacks.megatron_comm_overlap import MegatronCommOverlapCallback | ||
from nemo.utils.exp_manager import TimingCallback | ||
|
||
NAME = "mistral_nemo_base_12b" | ||
|
||
|
||
@run.cli.factory(name=NAME) | ||
def model() -> run.Config[pl.LightningModule]: | ||
""" | ||
Factory function to create a Mistral-Nemo-Base-12B model configuration. | ||
Returns: | ||
run.Config[pl.LightningModule]: Configuration for the Mistral-Nemo-Base-12B model. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm pretrain model=mistral_nemo_base_12b ... | ||
Python API usage: | ||
>>> model_config = model() | ||
>>> print(model_config) | ||
""" | ||
return run.Config(MistralModel, config=run.Config(MistralNeMoConfig12B)) | ||
|
||
|
||
def trainer( | ||
tensor_parallelism: int = 2, | ||
pipeline_parallelism: int = 1, | ||
pipeline_parallelism_type: Optional[torch.dtype] = None, | ||
virtual_pipeline_parallelism: Optional[int] = None, | ||
context_parallelism: int = 2, | ||
sequence_parallelism: bool = True, | ||
num_nodes: int = 1, | ||
num_gpus_per_node: int = 8, | ||
max_steps: int = 1168251, | ||
callbacks: Optional[list[run.Config[Callback]]] = None, | ||
) -> run.Config[nl.Trainer]: | ||
""" | ||
Configure the NeMo Lightning Trainer for Mistral-Nemo-Base-12B model. | ||
This function sets up the distributed training strategy and other training parameters. | ||
Args: | ||
tensor_parallelism (int): Degree of tensor model parallelism. | ||
pipeline_parallelism (int): Degree of pipeline model parallelism. | ||
pipeline_parallelism_type (Optional[torch.dtype]): Data type for pipeline parallelism. | ||
virtual_pipeline_parallelism (Optional[int]): Size of virtual pipeline parallelism. | ||
context_parallelism (int): Degree of context parallelism. | ||
sequence_parallelism (bool): Whether to use sequence parallelism. | ||
num_nodes (int): Number of compute nodes to use. | ||
num_gpus_per_node (int): Number of GPUs per node. | ||
max_steps (int): Maximum number of training steps. | ||
callbacks (Optional[list[run.Config[Callback]]]): List of callback configurations. | ||
Returns: | ||
run.Config[nl.Trainer]: Configuration for the NeMo Lightning Trainer. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm pretrain trainer=mistral_nemo_base_12b ... | ||
Python API usage: | ||
>>> trainer_config = trainer(num_nodes=2, num_gpus_per_node=8) | ||
>>> print(trainer_config) | ||
Note: | ||
For more information on distributed training strategies, refer to the | ||
NeMo documentation on multi-GPU and multi-node training. | ||
""" | ||
strategy = run.Config( | ||
nl.MegatronStrategy, | ||
tensor_model_parallel_size=tensor_parallelism, | ||
pipeline_model_parallel_size=pipeline_parallelism, | ||
pipeline_dtype=pipeline_parallelism_type, | ||
virtual_pipeline_model_parallel_size=virtual_pipeline_parallelism, | ||
context_parallel_size=context_parallelism, | ||
sequence_parallel=sequence_parallelism, | ||
gradient_as_bucket_view=True, | ||
ckpt_async_save=True, | ||
ckpt_parallel_load=True, | ||
ddp=run.Config( | ||
DistributedDataParallelConfig, | ||
check_for_nan_in_grad=True, | ||
grad_reduce_in_fp32=True, | ||
overlap_grad_reduce=True, | ||
overlap_param_gather=True, | ||
), | ||
) | ||
|
||
trainer = run.Config( | ||
nl.Trainer, | ||
accelerator="gpu", | ||
accumulate_grad_batches=1, | ||
callbacks=callbacks, | ||
devices=num_gpus_per_node, | ||
limit_test_batches=50, | ||
limit_val_batches=32, | ||
log_every_n_steps=10, | ||
max_steps=max_steps, | ||
num_nodes=num_nodes, | ||
plugins=bf16_mixed(), | ||
strategy=strategy, | ||
use_distributed_sampler=False, | ||
val_check_interval=2000, | ||
) | ||
|
||
return trainer | ||
|
||
|
||
@run.cli.factory(target=pretrain, name=NAME) | ||
def pretrain_recipe( | ||
dir: Optional[str] = None, name: str = "default", num_nodes: int = 1, num_gpus_per_node: int = 8, fn=pretrain | ||
) -> run.Partial: | ||
""" | ||
Create a pre-training recipe for Mistral-Nemo-Base-12B model. | ||
This function sets up a complete configuration for pre-training, including | ||
model, trainer, data, logging, optimization, and resumption settings. | ||
Args: | ||
dir (Optional[str]): Directory for saving logs and checkpoints. | ||
name (str): Name of the pre-training run. | ||
num_nodes (int): Number of compute nodes to use. | ||
num_gpus_per_node (int): Number of GPUs per node. | ||
fn (Callable): The pre-training function to use. | ||
Returns: | ||
run.Partial: Partial configuration for pre-training. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm pretrain --factory mistral_nemo_base_12b | ||
$ nemo llm pretrain --factory "mistral_nemo_base_12b(num_nodes=2, name='my_pretrain')" | ||
Python API usage: | ||
>>> recipe = pretrain_recipe(name="mistral_nemo_base_12b", num_nodes=2) | ||
>>> print(recipe) | ||
Note: | ||
For more details on pre-training LLMs with NeMo, see the pre-training | ||
guide in the `examples/llm/pretrain/` directory. | ||
""" | ||
return run.Partial( | ||
fn, | ||
model=model(), | ||
trainer=trainer( | ||
num_nodes=num_nodes, | ||
num_gpus_per_node=num_gpus_per_node, | ||
callbacks=[run.Config(TimingCallback)], | ||
), | ||
data=run.Config(MockDataModule, seq_length=8192, global_batch_size=512, micro_batch_size=1), | ||
log=default_log(dir=dir, name=name, tensorboard_logger=tensorboard_logger(name=name)), | ||
optim=distributed_fused_adam_with_cosine_annealing(max_lr=3e-4), | ||
resume=default_resume(), | ||
) | ||
|
||
|
||
@run.cli.factory(target=pretrain, name=NAME + "_optimized") | ||
def pretrain_recipe_performance( | ||
dir: Optional[str] = None, | ||
name: str = "default", | ||
num_nodes: int = 1, | ||
num_gpus_per_node: int = 8, | ||
fn: Callable = pretrain, | ||
) -> run.Partial: | ||
""" | ||
Create a performance-optimized pre-training recipe for Mistral-Nemo-Base-12B model. | ||
This recipe enables performance optimizations that may not be suitable for all use cases. | ||
It builds upon the standard pre-training recipe and adds additional performance enhancements. | ||
Args: | ||
dir (Optional[str]): Directory for saving logs and checkpoints. | ||
name (str): Name of the pre-training run. | ||
num_nodes (int): Number of compute nodes to use. | ||
num_gpus_per_node (int): Number of GPUs per node. | ||
fn (Callable): The pre-training function to use. | ||
Returns: | ||
run.Partial: Partial configuration for performance-optimized pre-training. | ||
Examples: | ||
$ nemo llm pretrain --factory mistral_nemo_base_12b_optimized | ||
Python API usage: | ||
>>> recipe = pretrain_recipe_performance(name="mistral_nemo_base_12b_perf", num_nodes=4) | ||
>>> print(recipe) | ||
Note: | ||
Use this recipe with caution and only when you need maximum performance. | ||
It may not be suitable for all hardware configurations or use cases. | ||
""" | ||
recipe = pretrain_recipe(name=name, dir=dir, num_nodes=num_nodes, num_gpus_per_node=num_gpus_per_node, fn=fn) | ||
|
||
recipe.trainer.callbacks.append( | ||
run.Config( | ||
MegatronCommOverlapCallback, | ||
tp_comm_overlap=True, | ||
) | ||
) | ||
return recipe | ||
|
||
|
||
@run.cli.factory(target=finetune, name=NAME) | ||
def finetune_recipe( | ||
dir: Optional[str] = None, | ||
name: str = "default", | ||
num_nodes: int = 1, | ||
num_gpus_per_node: int = 8, | ||
peft_scheme: Optional[str] = 'lora', | ||
) -> run.Partial: | ||
""" | ||
Create a fine-tuning recipe for Mistral-Nemo-Base-12B model. | ||
This function sets up a complete configuration for fine-tuning, including | ||
model, trainer, data, logging, optimization, and resumption settings. | ||
The recipe uses LoRA (Low-Rank Adaptation) for efficient fine-tuning, unless peft_scheme is set to None. | ||
Args: | ||
dir (Optional[str]): Directory for saving logs and checkpoints. | ||
name (str): Name of the fine-tuning run. | ||
num_nodes (int): Number of compute nodes to use. | ||
num_gpus_per_node (int): Number of GPUs per node. | ||
peft_scheme (Optional[str]): Name of the peft scheme to use for fine-tuning. Allowed values: 'lora', 'none'/None. | ||
Returns: | ||
run.Partial: Partial configuration for fine-tuning. | ||
Examples: | ||
CLI usage: | ||
$ nemo llm finetune --factory mistral_nemo_base_12b | ||
Python API usage: | ||
>>> recipe = finetune_recipe(name="mistral_nemo_base_12b_finetune", num_nodes=2) | ||
>>> print(recipe) | ||
Note: | ||
This recipe uses the SQuAD dataset for fine-tuning. For more information | ||
on fine-tuning LLMs with NeMo, see the fine-tuning guide in the | ||
`examples/llm/finetune/` directory. | ||
""" | ||
recipe = default_finetune_recipe( | ||
model(), "mistralai/Mistral-Nemo-Base-2407", dir, name, num_nodes, num_gpus_per_node | ||
) | ||
if peft_scheme is None or peft_scheme.lower() == 'none': | ||
recipe.optim.config.lr = 5e-6 | ||
elif peft_scheme.lower() == 'lora': | ||
recipe.peft = run.Config(LoRA, target_modules=['linear_qkv', 'linear_proj'], dim=32) | ||
recipe.optim.config.lr = 1e-4 | ||
else: | ||
raise ValueError(f"Unrecognized peft scheme: {peft_scheme}") | ||
return recipe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.