-
Notifications
You must be signed in to change notification settings - Fork 2.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Audio] Metric with Squim objective and MOS (#9751)
* Metric with Squim Objective and MOS Signed-off-by: Ante Jukić <[email protected]> * Removed utility functions Signed-off-by: Ante Jukić <[email protected]> --------- Signed-off-by: Ante Jukić <[email protected]>
- Loading branch information
Showing
6 changed files
with
355 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import Any | ||
|
||
import torch | ||
from torchmetrics import Metric | ||
from nemo.utils import logging | ||
|
||
try: | ||
import torchaudio | ||
|
||
HAVE_TORCHAUDIO = True | ||
except ModuleNotFoundError: | ||
HAVE_TORCHAUDIO = False | ||
|
||
|
||
class SquimMOSMetric(Metric): | ||
"""A metric calculating the average Torchaudio Squim MOS. | ||
Args: | ||
fs: sampling rate of the input signals | ||
""" | ||
|
||
sample_rate: int = 16000 # sample rate of the model | ||
mos_sum: torch.Tensor | ||
num_examples: torch.Tensor | ||
higher_is_better: bool = True | ||
|
||
def __init__(self, fs: int, **kwargs: Any): | ||
super().__init__(**kwargs) | ||
|
||
if not HAVE_TORCHAUDIO: | ||
raise ModuleNotFoundError(f"{self.__class__.__name__} metric needs `torchaudio`.") | ||
|
||
if fs != self.sample_rate: | ||
# Resampler: kaiser_best | ||
self._squim_mos_metric_resampler = torchaudio.transforms.Resample( | ||
orig_freq=fs, | ||
new_freq=self.sample_rate, | ||
lowpass_filter_width=64, | ||
rolloff=0.9475937167399596, | ||
resampling_method='sinc_interp_kaiser', | ||
beta=14.769656459379492, | ||
) | ||
logging.warning('Input signals will be resampled from fs=%d to %d Hz', fs, self.sample_rate) | ||
self.fs = fs | ||
|
||
# MOS model | ||
self._squim_mos_metric_model = torchaudio.pipelines.SQUIM_SUBJECTIVE.get_model() | ||
|
||
self.add_state('mos_sum', default=torch.tensor(0.0), dist_reduce_fx='sum') | ||
self.add_state('num_examples', default=torch.tensor(0), dist_reduce_fx='sum') | ||
logging.debug('Setup metric %s with input fs=%s', self.__class__.__name__, self.fs) | ||
|
||
def update(self, preds: torch.Tensor, target: torch.Tensor) -> None: | ||
"""Update the metric by calculating the MOS score for the current batch. | ||
Args: | ||
preds: tensor with predictions, shape (B, T) | ||
target: tensor with target signals, shape (B, T). Target can be a non-matching reference. | ||
""" | ||
if self.fs != self.sample_rate: | ||
preds = self._squim_mos_metric_resampler(preds) | ||
target = self._squim_mos_metric_resampler(target) | ||
|
||
if preds.ndim == 1: | ||
# Unsqueeze batch dimension | ||
preds = preds.unsqueeze(0) | ||
target = target.unsqueeze(0) | ||
elif preds.ndim > 2: | ||
raise ValueError(f'Expected 1D or 2D signals, got {preds.ndim}D signals') | ||
|
||
mos_batch = self._squim_mos_metric_model(preds, target) | ||
|
||
self.mos_sum += mos_batch.sum() | ||
self.num_examples += mos_batch.numel() | ||
|
||
def compute(self) -> torch.Tensor: | ||
"""Compute the underlying metric.""" | ||
return self.mos_sum / self.num_examples | ||
|
||
def state_dict(self, *args, **kwargs): | ||
"""Do not save the MOS model and resampler in the state dict.""" | ||
state_dict = super().state_dict(*args, **kwargs) | ||
# Do not include resampler or mos_model in the state dict | ||
remove_keys = [ | ||
key | ||
for key in state_dict.keys() | ||
if '_squim_mos_metric_resampler' in key or '_squim_mos_metric_model' in key | ||
] | ||
for key in remove_keys: | ||
del state_dict[key] | ||
return state_dict | ||
|
||
|
||
class SquimObjectiveMetric(Metric): | ||
"""A metric calculating the average Torchaudio Squim objective metric. | ||
Args: | ||
fs: sampling rate of the input signals | ||
metric: the objective metric to calculate. One of 'stoi', 'pesq', 'si_sdr' | ||
""" | ||
|
||
sample_rate: int = 16000 # sample rate of the model | ||
metric_sum: torch.Tensor | ||
num_examples: torch.Tensor | ||
higher_is_better: bool = True | ||
|
||
def __init__(self, fs: int, metric: str, **kwargs: Any): | ||
super().__init__(**kwargs) | ||
|
||
if not HAVE_TORCHAUDIO: | ||
raise ModuleNotFoundError(f"{self.__class__.__name__} needs `torchaudio`.") | ||
|
||
if fs != self.sample_rate: | ||
# Resampler: kaiser_best | ||
self._squim_objective_metric_resampler = torchaudio.transforms.Resample( | ||
orig_freq=fs, | ||
new_freq=self.sample_rate, | ||
lowpass_filter_width=64, | ||
rolloff=0.9475937167399596, | ||
resampling_method='sinc_interp_kaiser', | ||
beta=14.769656459379492, | ||
) | ||
logging.warning('Input signals will be resampled from fs=%d to %d Hz', fs, self.sample_rate) | ||
self.fs = fs | ||
|
||
if metric not in ['stoi', 'pesq', 'si_sdr']: | ||
raise ValueError(f'Unsupported metric {metric}. Supported metrics are "stoi", "pesq", "si_sdr".') | ||
|
||
self.metric = metric | ||
|
||
# Objective model | ||
self._squim_objective_metric_model = torchaudio.pipelines.SQUIM_OBJECTIVE.get_model() | ||
|
||
self.add_state('metric_sum', default=torch.tensor(0.0), dist_reduce_fx='sum') | ||
self.add_state('num_examples', default=torch.tensor(0), dist_reduce_fx='sum') | ||
logging.debug('Setup %s with metric=%s, input fs=%s', self.__class__.__name__, self.metric, self.fs) | ||
|
||
def update(self, preds: torch.Tensor, target: Any = None) -> None: | ||
"""Update the metric by calculating the selected metric score for the current batch. | ||
Args: | ||
preds: tensor with predictions, shape (B, T) | ||
target: None, not used. Keeping for interfacfe compatibility with other metrics. | ||
""" | ||
if self.fs != self.sample_rate: | ||
preds = self._squim_objective_metric_resampler(preds) | ||
|
||
if preds.ndim == 1: | ||
# Unsqueeze batch dimension | ||
preds = preds.unsqueeze(0) | ||
elif preds.ndim > 2: | ||
raise ValueError(f'Expected 1D or 2D signals, got {preds.ndim}D signals') | ||
|
||
stoi_batch, pesq_batch, si_sdr_batch = self._squim_objective_metric_model(preds) | ||
|
||
if self.metric == 'stoi': | ||
metric_batch = stoi_batch | ||
elif self.metric == 'pesq': | ||
metric_batch = pesq_batch | ||
elif self.metric == 'si_sdr': | ||
metric_batch = si_sdr_batch | ||
else: | ||
raise ValueError(f'Unknown metric {self.metric}') | ||
|
||
self.metric_sum += metric_batch.sum() | ||
self.num_examples += metric_batch.numel() | ||
|
||
def compute(self) -> torch.Tensor: | ||
"""Compute the underlying metric.""" | ||
return self.metric_sum / self.num_examples | ||
|
||
def state_dict(self, *args, **kwargs): | ||
"""Do not save the MOS model and resampler in the state dict.""" | ||
state_dict = super().state_dict(*args, **kwargs) | ||
# Do not include resampler or mos_model in the state dict | ||
remove_keys = [ | ||
key | ||
for key in state_dict.keys() | ||
if '_squim_objective_metric_resampler' in key or '_squim_objective_metric_model' in key | ||
] | ||
for key in remove_keys: | ||
del state_dict[key] | ||
return state_dict |
Oops, something went wrong.