Skip to content

Commit

Permalink
SDXL improvements (and support for Draft+) [DRAFT PR] (#9543)
Browse files Browse the repository at this point in the history
* add slurm files to .gitignore

* add differentiable decode to SDXL VAE

* Optionally return predicted noise during the single step sampling process
* also change  `get_gamma` as a new function to use inside other
  functions which may interact with sampling (e.g. draft+)

* debugging sdunet converter script

* Added SD/SDXL conversion script from HF to NeMo
* added 'from_nemo' config for VAE

* tmp commit, please make changes (oci is super slow, cannot even run vim)

* new inference yaml works

* add logging to autoencoder

* !(dont squash) Added enabling support for LinearWrapper for SDLoRA

* added samples_per_batch and fsdp arguments to SDXL inference

* added extra optionally wrapper to FSDP

* remove unncessary comments

* remove unnecessary comments

* Apply isort and black reformatting

Signed-off-by: yaoyu-33 <[email protected]>

---------

Signed-off-by: yaoyu-33 <[email protected]>
Co-authored-by: Rohit Jena <[email protected]>
Co-authored-by: Yu Yao <[email protected]>
Co-authored-by: yaoyu-33 <[email protected]>
Signed-off-by: Rohit Jena <[email protected]>
  • Loading branch information
4 people committed Jul 9, 2024
1 parent f9c3a8b commit 0f97b47
Show file tree
Hide file tree
Showing 22 changed files with 880 additions and 89 deletions.
2 changes: 2 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
*.pkl
#*.ipynb
output
output_2048
result
*.pt
tests/data/asr
Expand Down Expand Up @@ -179,3 +180,4 @@ examples/neural_graphs/*.yml
.hydra/
nemo_experiments/

slurm*.out
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,6 @@ trainer:
enable_model_summary: True
limit_val_batches: 0


exp_manager:
exp_dir: null
name: ${name}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -58,8 +58,6 @@ model:
lossconfig:
target: torch.nn.Identity



conditioner_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.GeneralConditioner
emb_models:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,6 @@ model:
target: torch.nn.Identity



conditioner_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.GeneralConditioner
emb_models:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,9 @@ infer:
sampling:
base:
sampler: EulerEDMSampler
width: 256
height: 256
steps: 40
width: 512
height: 512
steps: 50
discretization: "LegacyDDPMDiscretization"
guider: "VanillaCFG"
thresholder: "None"
Expand All @@ -48,8 +48,8 @@ sampling:
s_noise: 1.0
eta: 1.0
order: 4
orig_width: 1024
orig_height: 1024
orig_width: 512
orig_height: 512
crop_coords_top: 0
crop_coords_left: 0
aesthetic_score: 5.0
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,189 @@
trainer:
devices: 1
num_nodes: 1
accelerator: gpu
precision: 32
logger: False # logger provided by exp_manager
enable_checkpointing: False
use_distributed_sampler: False
max_epochs: -1 # PTL default. In practice, max_steps will be reached first.
max_steps: -1 # consumed_samples = global_step * micro_batch_size * data_parallel_size * accumulate_grad_batches
log_every_n_steps: 10
accumulate_grad_batches: 1 # do not modify, grad acc is automatic for training megatron models
gradient_clip_val: 1.0
benchmark: False
enable_model_summary: True
limit_val_batches: 0


infer:
num_samples_per_batch: 1
num_samples: 4
prompt:
- "A professional photograph of an astronaut riding a pig"
- 'A photo of a Shiba Inu dog with a backpack riding a bike. It is wearing sunglasses and a beach hat.'
- 'A cute corgi lives in a house made out of sushi.'
- 'A high contrast portrait of a very happy fuzzy panda dressed as a chef in a high end kitchen making dough. There is a painting of flowers on the wall behind him.'
- 'A brain riding a rocketship heading towards the moon.'
negative_prompt: ""
seed: 123


sampling:
base:
sampler: EulerEDMSampler
width: 512
height: 512
steps: 50
discretization: "LegacyDDPMDiscretization"
guider: "VanillaCFG"
thresholder: "None"
scale: 5.0
img2img_strength: 1.0
sigma_min: 0.0292
sigma_max: 14.6146
rho: 3.0
s_churn: 0.0
s_tmin: 0.0
s_tmax: 999.0
s_noise: 1.0
eta: 1.0
order: 4
orig_width: 512
orig_height: 512
crop_coords_top: 0
crop_coords_left: 0
aesthetic_score: 5.0
negative_aesthetic_score: 5.0

# model:
# is_legacy: False

use_refiner: False
use_fp16: False # use fp16 model weights
out_path: ./output

base_model_config: /opt/NeMo/examples/multimodal/generative/stable_diffusion/conf/sd_xl_base.yaml
refiner_config: /opt/NeMo/examples/multimodal/generative/stable_diffusion/conf/sd_xl_refiner.yaml

model:
scale_factor: 0.13025
disable_first_stage_autocast: True
is_legacy: False
restore_from_path: ""

fsdp: False
fsdp_set_buffer_dtype: null
fsdp_sharding_strategy: 'full'
use_cpu_initialization: True
# hidden_size: 4
# pipeline_model_parallel_size: 4

optim:
name: fused_adam
lr: 1e-4
weight_decay: 0.0
betas:
- 0.9
- 0.999
sched:
name: WarmupHoldPolicy
warmup_steps: 10
hold_steps: 10000000000000 # Incredibly large value to hold the lr as constant

denoiser_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.diffusionmodules.denoiser.DiscreteDenoiser
num_idx: 1000

weighting_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.diffusionmodules.denoiser_scaling.EpsScaling
discretization_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.diffusionmodules.discretizer.LegacyDDPMDiscretization

unet_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.diffusionmodules.openaimodel.UNetModel
from_pretrained: /opt/nemo-aligner/checkpoints/sdxl/unet_nemo.ckpt
from_NeMo: True
adm_in_channels: 2816
num_classes: sequential
use_checkpoint: False
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4 ]
num_head_channels: 64
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: [ 1, 2, 10 ] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16
context_dim: 2048
image_size: 64 # unused
# spatial_transformer_attn_type: softmax #note: only default softmax is supported now
legacy: False
use_flash_attention: False

first_stage_config:
# _target_: nemo.collections.multimodal.models.stable_diffusion.ldm.autoencoder.AutoencoderKLInferenceWrapper
_target_: nemo.collections.multimodal.models.text_to_image.stable_diffusion.ldm.autoencoder.AutoencoderKLInferenceWrapper
from_pretrained: /opt/nemo-aligner/checkpoints/sdxl/vae_nemo.ckpt
from_NeMo: True
embed_dim: 4
monitor: val/rec_loss
ddconfig:
attn_type: vanilla
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 4, 4 ]
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity

conditioner_config:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.GeneralConditioner
emb_models:
# crossattn cond
- is_trainable: False
input_key: txt
emb_model:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.FrozenCLIPEmbedder
layer: hidden
layer_idx: 11
# crossattn and vector cond
- is_trainable: False
input_key: txt
emb_model:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.FrozenOpenCLIPEmbedder2
arch: ViT-bigG-14
version: laion2b_s39b_b160k
freeze: True
layer: penultimate
always_return_pooled: True
legacy: False
# vector cond
- is_trainable: False
input_key: original_size_as_tuple
emb_model:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.ConcatTimestepEmbedderND
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: crop_coords_top_left
emb_model:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.ConcatTimestepEmbedderND
outdim: 256 # multiplied by two
# vector cond
- is_trainable: False
input_key: target_size_as_tuple
emb_model:
_target_: nemo.collections.multimodal.modules.stable_diffusion.encoders.modules.ConcatTimestepEmbedderND
outdim: 256 # multiplied by two

Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,11 @@ def main(cfg) -> None:
n, c, h = cfg.model.micro_batch_size, cfg.model.channels, cfg.model.image_size
x = torch.randn((n, c, h, h), dtype=torch.float32, device="cuda")
t = torch.randint(77, (n,), device="cuda")
cc = torch.randn((n, 77, cfg.model.unet_config.context_dim), dtype=torch.float32, device="cuda",)
cc = torch.randn(
(n, 77, cfg.model.unet_config.context_dim),
dtype=torch.float32,
device="cuda",
)
if cfg.model.precision in [16, '16']:
x = x.type(torch.float16)
cc = cc.type(torch.float16)
Expand All @@ -93,9 +97,7 @@ def main(cfg) -> None:
model.zero_grad()

if cfg.model.get('peft', None):

peft_cfg_cls = PEFT_CONFIG_MAP[cfg.model.peft.peft_scheme]

if cfg.model.peft.restore_from_path is not None:
# initialize peft weights from a checkpoint instead of randomly
# This is not the same as resume training because optimizer states are not restored.
Expand Down
44 changes: 28 additions & 16 deletions examples/multimodal/text_to_image/stable_diffusion/sd_xl_infer.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,32 +26,44 @@ def model_cfg_modifier(model_cfg):
model_cfg.precision = cfg.trainer.precision
model_cfg.ckpt_path = None
model_cfg.inductor = False
model_cfg.unet_config.from_pretrained = None
model_cfg.first_stage_config.from_pretrained = None
model_cfg.unet_config.from_pretrained = "/opt/nemo-aligner/checkpoints/sdxl/unet_nemo.ckpt"
model_cfg.unet_config.from_NeMo = True
model_cfg.first_stage_config.from_pretrained = "/opt/nemo-aligner/checkpoints/sdxl/vae_nemo.ckpt"
model_cfg.first_stage_config.from_NeMo = True
model_cfg.first_stage_config._target_ = 'nemo.collections.multimodal.models.text_to_image.stable_diffusion.ldm.autoencoder.AutoencoderKLInferenceWrapper'
model_cfg.fsdp = False
# model_cfg.fsdp = True

torch.backends.cuda.matmul.allow_tf32 = True
trainer, megatron_diffusion_model = setup_trainer_and_model_for_inference(
model_provider=MegatronDiffusionEngine, cfg=cfg, model_cfg_modifier=model_cfg_modifier
)

### Manually configure sharded model
# model = megatron_diffusion_model
# model = trainer.strategy._setup_model(model)
# model = model.cuda(torch.cuda.current_device())
# get the diffusion part only
model = megatron_diffusion_model.model
model.cuda().eval()

base = SamplingPipeline(model, use_fp16=cfg.use_fp16, is_legacy=cfg.model.is_legacy)
use_refiner = cfg.get('use_refiner', False)
for i, prompt in enumerate(cfg.infer.prompt):
samples = base.text_to_image(
params=cfg.sampling.base,
prompt=[prompt],
negative_prompt=cfg.infer.negative_prompt,
samples=cfg.infer.num_samples,
return_latents=True if use_refiner else False,
seed=int(cfg.infer.seed + i * 100),
)

perform_save_locally(cfg.out_path, samples)
with torch.no_grad():
base = SamplingPipeline(model, use_fp16=cfg.use_fp16, is_legacy=cfg.model.is_legacy)
use_refiner = cfg.get('use_refiner', False)
num_samples_per_batch = cfg.infer.get('num_samples_per_batch', cfg.infer.num_samples)
num_batches = cfg.infer.num_samples // num_samples_per_batch

for i, prompt in enumerate(cfg.infer.prompt):
for batchid in range(num_batches):
samples = base.text_to_image(
params=cfg.sampling.base,
prompt=[prompt],
negative_prompt=cfg.infer.negative_prompt,
samples=num_samples_per_batch,
return_latents=True if use_refiner else False,
seed=int(cfg.infer.seed + i * 100 + batchid * 200),
)
# samples=cfg.infer.num_samples,
perform_save_locally(cfg.out_path, samples)


if __name__ == "__main__":
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,10 @@ def _training_strategy(self) -> NLPDDPStrategy:
_IS_INTERACTIVE = hasattr(sys, "ps1") or bool(sys.flags.interactive)
if _IS_INTERACTIVE and self.cfg.trainer.devices == 1:
logging.info("Detected interactive environment, using NLPDDPStrategyNotebook")
return NLPDDPStrategyNotebook(no_ddp_communication_hook=True, find_unused_parameters=False,)
return NLPDDPStrategyNotebook(
no_ddp_communication_hook=True,
find_unused_parameters=False,
)

if self.cfg.model.get('fsdp', False):
assert (
Expand Down Expand Up @@ -81,9 +84,7 @@ def main(cfg) -> None:
model = MegatronDiffusionEngine(cfg.model, trainer)

if cfg.model.get('peft', None):

peft_cfg_cls = PEFT_CONFIG_MAP[cfg.model.peft.peft_scheme]

if cfg.model.peft.restore_from_path is not None:
# initialize peft weights from a checkpoint instead of randomly
# This is not the same as resume training because optimizer states are not restored.
Expand Down
Loading

0 comments on commit 0f97b47

Please sign in to comment.