An open source Data Science repository with links and tutorials for data science.
The programming languages Python and R dominate datascience. For visualization Vega,Vega-Lite and D3 are excellent langauages.
top TODO - add excellent learning python and R links here
Stanford statisticians Trevor Hastie. Robert Tibshirani have an outstanding course and book on statistical learning called An Introduction for Statistical Learning
A free PDF version of the The 2nd edition of An Introduction for Statistical Learning is available here https://www.dropbox.com/s/krvhmt7z8zxhl7f/ISLRv2_website.pdf?dl=0
You can see the examples in python at https://github.com/aiskunks/Skunks_Skool/tree/main/I2SL_Statistical_Learning
In particular start with chapters 2, 3, and 4.
Chapter 2: Statistical Learning playlist https://www.youtube.com/playlist?list=PL5-da3qGB5IDvuFPNoSqheihPOQNJpzyy
Chapter 3: Linear Regression https://www.youtube.com/playlist?list=PL5-da3qGB5IBSSCPANhTgrw82ws7w_or9
Chapter 4: Classification ISLR Chapter 4: Classification https://youtube.com/playlist?list=PL5-da3qGB5IC4vaDba5ClatUmFppXLAh
Step 2 specifics.
Read or look at the videos for An Introduction for Statistical Learning chapters 2, 3 and 4. Then,
- Find a data set for classification and regression.
- Build simple supervised models for classification and regression using logistic and linear regression.
- Intepret the output and regression coeffecients.
- Did the model do well.
- What metrics did you use to evalaute classification and regression?
TODO - add links related to linear and logistic regression.
TODO
- Algorithms
- Podcasts
- Books
- YouTube Videos & Channels
- Toolboxes - Environment
- Journals, Publications and Magazines
- Presentations
- Tutorials
These are some Machine Learning and Data Mining algorithms and models help you to understand your data and derive meaning from it.
- Regression
- Linear Regression
- Ordinary Least Squares
- Logistic Regression
- Stepwise Regression
- Multivariate Adaptive Regression Splines
- Locally Estimated Scatterplot Smoothing
- Classification
- k-nearest neighbor
- Support Vector Machines
- Decision Trees
- ID3 algorithm
- C4.5 algorithm
- Ensemble Learning
- Boosting
- Bagging
- Random Forest
- AdaBoost
- Clustering
- Hierchical clustering
- k-means
- Fuzzy clustering
- Mixture models
- Dimension Reduction
- Principal Component Analysis (PCA)
- t-SNE
- Neural Networks
- Self-organizing map
- Adaptive resonance theory
- Hidden Markov Models (HMM)
- S3VM
- Clustering
- Generative models
- Low-density separation
- Laplacian regularization
- Heuristic approaches
- Q Learning
- SARSA (State-Action-Reward-State-Action) algorithm
- Temporal difference learning
- C4.5
- k-Means
- SVM:https://scikit-learn.org/stable/modules/svm.html
- Apriori
- EM
- PageRank
- AdaBoost
- kNN
- Naive Bayes
- CART
- Multilayer Perceptron
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN):https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
- Boltzmann Machines
- Autoencoder
- Generative Adversarial Network (GAN):https://snfexfab.stanford.edu/docs/report/community-service-extension-request-p-ganalgangan-e-mode-hemt
- Self-Organized Maps
- Coursera Introduction to Data Science
- CS 171 Visualization
- Process Mining: Data science in Action
- Oxford Deep Learning
- Oxford Deep Learning - video
- Oxford Machine Learning
- 1000 Data Science Projects you can run on browser with ipyton.
- #tidytuesday A weekly data project aimed at the R ecosystem.
- Data science your way
- PySpark Cheatsheet
Link | Description |
---|---|
The Data Science Lifecycle Process | The Data Science Lifecycle Process is a process for taking data science teams from Idea to Value repeatedly and sustainably. The process is documented in this repo |
Data Science Lifecycle Template Repo | Template repository for data science lifecycle project |
RexMex | A general purpose recommender metrics library for fair evaluation. |
ChemicalX | A PyTorch based deep learning library for drug pair scoring. |
PyTorch Geometric Temporal | Representation learning on dynamic graphs. |
Little Ball of Fur | A graph sampling library for NetworkX with a Scikit-Learn like API. |
Karate Club | An unsupervised machine learning extension library for NetworkX with a Scikit-Learn like API. |
ML Workspace | All-in-one web-based IDE for machine learning and data science. The workspace is deployed as a Docker container and is preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch) and dev tools (e.g., Jupyter, VS Code) |
Neptune.ai | Community-friendly platform supporting data scientists in creating and sharing machine learning models. Neptune facilitates teamwork, infrastructure management, models comparison and reproducibility. |
steppy | Lightweight, Python library for fast and reproducible machine learning experimentation. Introduces very simple interface that enables clean machine learning pipeline design. |
steppy-toolkit | Curated collection of the neural networks, transformers and models that make your machine learning work faster and more effective. |
Datalab from Google | easily explore, visualize, analyze, and transform data using familiar languages, such as Python and SQL, interactively. |
Hortonworks Sandbox | is a personal, portable Hadoop environment that comes with a dozen interactive Hadoop tutorials. |
R | is a free software environment for statistical computing and graphics. |
RStudio | IDE – powerful user interface for R. It’s free and open source, works on Windows, Mac, and Linux. |
Python - Pandas - Anaconda | Completely free enterprise-ready Python distribution for large-scale data processing, predictive analytics, and scientific computing |
Pandas GUI | Pandas GUI |
Scikit-Learn | Machine Learning in Python |
NumPy | NumPy is fundamental for scientific computing with Python. It supports large, multi-dimensional arrays and matrices and includes an assortment of high-level mathematical functions to operate on these arrays. |
Vaex | Vaex is a Python library that allows you to visualize large datasets and calculate statistics at high speeds. |
SciPy | SciPy works with NumPy arrays and provides efficient routines for numerical integration and optimization. |
Data Science Toolbox | Coursera Course |
Data Science Toolbox | Blog |
Wolfram Data Science Platform | Take numerical, textual, image, GIS or other data and give it the Wolfram treatment, carrying out a full spectrum of data science analysis and visualization and automatically generating rich interactive reports—all powered by the revolutionary knowledge-based Wolfram Language. |
Datadog | Solutions, code, and devops for high-scale data science. |
Variance | Build powerful data visualizations for the web without writing JavaScript |
Kite Development Kit | The Kite Software Development Kit (Apache License, Version 2.0) , or Kite for short, is a set of libraries, tools, examples, and documentation focused on making it easier to build systems on top of the Hadoop ecosystem. |
Domino Data Labs | Run, scale, share, and deploy your models — without any infrastructure or setup. |
Apache Flink | A platform for efficient, distributed, general-purpose data processing. |
Apache Hama | Apache Hama is an Apache Top-Level open source project, allowing you to do advanced analytics beyond MapReduce. |
Weka | Weka is a collection of machine learning algorithms for data mining tasks. |
Octave | GNU Octave is a high-level interpreted language, primarily intended for numerical computations.(Free Matlab) |
Apache Spark | Lightning-fast cluster computing |
Hydrosphere Mist | a service for exposing Apache Spark analytics jobs and machine learning models as realtime, batch or reactive web services. |
Data Mechanics | A data science and engineering platform making Apache Spark more developer-friendly and cost-effective. |
Caffe | Deep Learning Framework |
Torch | A SCIENTIFIC COMPUTING FRAMEWORK FOR LUAJIT |
Nervana's python based Deep Learning Framework | . |
Skale | High performance distributed data processing in NodeJS |
Aerosolve | A machine learning package built for humans. |
Intel framework | Intel® Deep Learning Framework |
Datawrapper | An open source data visualization platform helping everyone to create simple, correct and embeddable charts. Also at github.com |
Tensor Flow | TensorFlow is an Open Source Software Library for Machine Intelligence |
Natural Language Toolkit | An introductory yet powerful toolkit for natural language processing and classification |
nlp-toolkit for node.js | . |
Julia | high-level, high-performance dynamic programming language for technical computing |
IJulia | a Julia-language backend combined with the Jupyter interactive environment |
Apache Zeppelin | Web-based notebook that enables data-driven, interactive data analytics and collaborative documents with SQL, Scala and more |
Featuretools | An open source framework for automated feature engineering written in python |
Optimus | Cleansing, pre-processing, feature engineering, exploratory data analysis and easy ML with PySpark backend. |
Albumentations | А fast and framework agnostic image augmentation library that implements a diverse set of augmentation techniques. Supports classification, segmentation, detection out of the box. Was used to win a number of Deep Learning competitions at Kaggle, Topcoder and those that were a part of the CVPR workshops. |
DVC | An open-source data science version control system. It helps track, organize and make data science projects reproducible. In its very basic scenario it helps version control and share large data and model files. |
Lambdo | is a workflow engine which significantly simplifies data analysis by combining in one analysis pipeline (i) feature engineering and machine learning (ii) model training and prediction (iii) table population and column evaluation. |
Feast | A feature store for the management, discovery, and access of machine learning features. Feast provides a consistent view of feature data for both model training and model serving. |
Polyaxon | A platform for reproducible and scalable machine learning and deep learning. |
LightTag | Text Annotation Tool for teams |
UBIAI | Easy-to-use text annotation tool for teams with most comprehensive auto-annotation features. Supports NER, relations and document classification as well as OCR annotation for invoice labeling |
Trains | Auto-Magical Experiment Manager, Version Control & DevOps for AI |
Hopsworks | Open-source data-intensive machine learning platform with a feature store. Ingest and manage features for both online (MySQL Cluster) and offline (Apache Hive) access, train and serve models at scale. |
MindsDB | MindsDB is an Explainable AutoML framework for developers. With MindsDB you can build, train and use state of the art ML models in as simple as one line of code. |
Lightwood | A Pytorch based framework that breaks down machine learning problems into smaller blocks that can be glued together seamlessly with an objective to build predictive models with one line of code. |
AWS Data Wrangler | An open-source Python package that extends the power of Pandas library to AWS connecting DataFrames and AWS data related services (Amazon Redshift, AWS Glue, Amazon Athena, Amazon EMR, etc). |
Amazon Rekognition | AWS Rekognition is a service that lets developers working with Amazon Web Services add image analysis to their applications. Catalog assets, automate workflows, and extract meaning from your media and applications. |
Amazon Textract | Automatically extract printed text, handwriting, and data from any document. |
Amazon Lookout for Vision | Spot product defects using computer vision to automate quality inspection.Identify missing product components, vehicle and structure damage, and irregularities for comprehensive quality control. |
Amazon CodeGuru | Automate code reviews and optimize application performance with ML-powered recommendations. |
CML | An open source toolkit for using continuous integration in data science projects. Automatically train and test models in production-like environments with GitHub Actions & GitLab CI, and autogenerate visual reports on pull/merge requests. |
Dask | An open source Python library to painlessly transition your analytics code to distributed computing systems (Big Data) |
Statsmodels | A Python-based inferential statistics, hypothesis testing and regression framework |
Gensim | An open-source library for topic modeling of natural language text |
spaCy | A performant natural language processing toolkit |
Grid Studio | Grid studio is a web-based spreadsheet application with full integration of the Python programming language. |
Python Data Science Handbook | Python Data Science Handbook: full text in Jupyter Notebooks |
Shapley | A data-driven framework to quantify the value of classifiers in a machine learning ensemble. |
DAGsHub | A platform built on open source tools for data, model and pipeline management. |
Apache Airflow | A platform created by the community to programmatically author, schedule and monitor workflows |
Deepnote | A new kind of data science notebook. Jupyter-compatible, with real-time collaboration and running in the cloud. |
Valohai | An MLOps platform that handles machine orchestration, automatic reproducibility and deployment. |
PyMC3 | A Python Library for Probabalistic Programming (Bayesian Inference and Machine Learning) |
PyStan | Python interface to Stan (Bayesian inference and modeling) |
hmmlearn | Unsupervised learning and inference of Hidden Markov Models |
Chaos Genius | ML powered analytics engine for outlier/anomaly detection and root cause analysis |
- scikit-learn
- scikit-multilearn
- sklearn-expertsys
- scikit-feature
- scikit-rebate
- seqlearn
- sklearn-bayes
- sklearn-crfsuite
- sklearn-deap
- sigopt_sklearn
- sklearn-evaluation
- scikit-image
- scikit-opt
- scikit-posthocs
- pystruct
- Shogun
- xLearn
- cuML
- causalml
- mlpack
- MLxtend
- modAL
- Sparkit-learn
- hyperlearn
- dlib
- RuleFit
- pyGAM
- Deepchecks
- Numpy
- Theano
- Tensorflow
- PyTorch
- torchvision
- torchtext
- torchaudio
- ignite
- PyTorchNet
- PyToune
- skorch
- PyVarInf
- pytorch_geometric
- GPyTorch
- pyro
- Catalyst
- pytorch_tabular
- TensorFlow
- TensorLayer
- TFLearn
- Sonnet
- tensorpack
- TRFL
- Polyaxon
- NeuPy
- tfdeploy
- tensorflow-upstream
- TensorFlow Fold
- tensorlm
- TensorLight
- Mesh TensorFlow
- Ludwig
- TF-Agents
- TensorForce
- altair
- addepar
- amcharts
- anychart
- bokeh
- slemma
- cartodb
- Cube
- d3plus
- Data-Driven Documents(D3js)
- datahero
- dygraphs
- ECharts
- exhibit
- gephi
- ggplot2
- Glue
- Google Chart Gallery
- highcarts
- import.io
- ipychart
- jqplot
- Matplotlib
- nvd3
- Netron
- Opendata-tools
- Openrefine
- plot.ly
- raw
- Seaborn
- techanjs
- Timeline
- variancecharts
- vida
- vizzu
- Wrangler
- r2d3
- NetworkX
- Redash
- C3
- TensorWatch
- ICML - International Conference on Machine Learning
- GECCO - The Genetic and Evolutionary Computation Conference (GECCO)
- epjdatascience
- Journal of Data Science - an international journal devoted to applications of statistical methods at large
- Big Data Research
- Journal of Big Data
- Big Data & Society
- Data Science Journal
- datatau.com/news - Like Hacker News, but for data
- Data Science Trello Board
- Medium Data Science Topic - Data Science related publications on medium
- Towards Data Science Genetic Algorithm Topic -Genetic Algorithm related Publications onTowards Data Science
- Building Data Start-Ups: Fast, Big, and Focused
- How to win data science competitions with Deep Learning
- Full-Stack Data Scientist
- AI at Home
- AI Today
- Adversarial Learning
- Becoming a Data Scientist
- Chai time Data Science
- Data Crunch
- Data Engineering Podcast
- Data Science at Home
- Data Science Mixer
- Data Skeptic
- Data Stories
- Datacast
- DataFramed
- DataTalks.Club
- Gradient Dissent
- Learning Machines 101
- Let's Data (Brazil)
- Linear Digressions
- Not So Standard Deviations
- O'Reilly Data Show Podcast
- Partially Derivative
- Superdatascience
- The Data Engineering Show
- The Radical AI Podcast
- The Robot Brains Podcast
- What's The Point
- DeepMind - An Inside Look
- Exploring Data Science - free eBook sampler
- Exploring the Data Jungle - free eBook sampler
- Classic Computer Science Problems in Python
- Math for Programmers Early access
- R in Action, Third Edition Early access
- Data Science Bookcamp Early access
- Data Science Thinking: The Next Scientific, Technological and Economic Revolution
- Applied Data Science: Lessons Learned for the Data-Driven Business
- The Data Science Handbook
- Essential Natural Language Processing - Early access
- Mining Massive Datasets - free e-book comprehended by an online course
- Pandas in Action - Early access
- Genetic Algorithms and Genetic Programming
- Genetic algorithms in search, optimization, and machine learning - Free Download
- Advances in Evolutionary Algorithms - Free Download
- Genetic Programming: New Approaches and Successful Applications - Free Download
- Evolutionary Algorithms - Free Download
- Advances in Genetic Programming, Vol. 3 - Free Download
- Global Optimization Algorithms: Theory and Application - Free Download
- Genetic Algorithms and Evolutionary Computation - Free Download
- Convex Optimization - Convex Optimization book by Stephen Boyd - Free Download
- Data Analysis with Python and PySpark - Early access
- R for Data Science
- Build a Career in Data Science
- Machine Learning Bookcamp - Early access
- Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
- Effective Data Science Infrastructure
- Practical MLOps: How to Get Ready for Production Models
- Data Analysis with Python and PySpark
- Regression, a Friendly guide - Early access
- Streaming Systems: The What, Where, When, and How of Large-Scale Data Processing
- Data Science at the Command Line: Facing the Future with Time-Tested Tools
-
Wes McKinney - Wes McKinney Archives.
-
Matthew Russell - Mining The Social Web.
-
Vamshi Ambati - AllThings Data Sciene
-
Prash Chan - Tech Blog on Master Data Management And Every Buzz Surrounding It
-
Clare Corthell - The Open Source Data Science Masters
-
Paul Miller Based in the UK and working globally, Cloud of Data's consultancy services help clients understand the implications of taking data and more to the Cloud.
-
Data Science London Data Science London is a non-profit organization dedicated to the free, open, dissemination of data science. We are the largest data science community in Europe. We are more than 3,190 data scientists and data geeks in our community.
-
Datawrangling by Peter Skomoroch. MACHINE LEARNING, DATA MINING, AND MORE
-
Quora Data Science - Data Science Questions and Answers from experts
-
Siah a PhD student at Berkeley
-
Data Science Report MDS, Inc. Helps Build Careers in Data Science, Advanced Analytics, Big Data Architecture, and High Performance Software Engineering
-
Louis Dorard a technology guy with a penchant for the web and for data, big and small
-
Machine Learning Mastery about helping professional programmers to confidently apply machine learning algorithms to address complex problems.
-
Daniel Forsyth - Personal Blog
-
Data Science Weekly - Weekly News Blog
-
Revolution Analytics - Data Science Blog
-
R Bloggers - R Bloggers
-
The Practical Quant Big data
-
Datascope Analytics data-driven consulting and design
-
Yet Another Data Blog Yet Another Data Blog
-
Spenczar a data scientist at Twitch. I handle the whole data pipeline, from tracking to model-building to reporting.
-
KD Nuggets Data Mining, Analytics, Big Data, Data, Science not a blog a portal
-
Meta Brown - Personal Blog
-
Data Scientist is building the data scientist culture.
-
WhatSTheBigData is some of, all of, or much more than the above and this blog explores its impact on information technology, the business world, government agencies, and our lives.
-
Tevfik Kosar - Magnus Notitia
-
New Data Scientist How a Social Scientist Jumps into the World of Big Data
-
Harvard Data Science - Thoughts on Statistical Computing and Visualization
-
Data Science 101 - Learning To Be A Data Scientist
-
P-value - Musings on data science, machine learning and stats.
-
Data Mania Blog - The File Drawer - Chris Said's science blog
- Data
- Big Data Scientist
- Data Science Day
- Data Science Academy
- Facebook Data Science Page
- Data Science London
- Data Science Technology and Corporation
- Data Science - Closed Group
- Center for Data Science
Description | |
---|---|
Big Data Combine | Rapid-fire, live tryouts for data scientists seeking to monetize their models as trading strategies |
Big Data Mania | Data Viz Wiz , Data Journalist , Growth Hacker , Author of Data Science for Dummies (2015) |
Big Data Science | Big Data, Data Science, Predictive Modeling, Business Analytics, Hadoop, Decision and Operations Research. |
Charlie Greenbacker | Director of Data Science at @ExploreAltamira |
Chris Said | Data scientist at Twitter |
Clare Corthell | Dev, Design, Data Science @mattermark #hackerei |
DADI Charles-Abner | #datascientist @Ekimetrics. , #machinelearning #dataviz #DynamicCharts #Hadoop #R #Python #NLP #Bitcoin #dataenthousiast |
Data Science Central | Data Science Central is the industry's single resource for Big Data practitioners. |
Data Science London | Data Science. Big Data. Data Hacks. Data Junkies. Data Startups. Open Data |
Data Science Renee | Documenting my path from SQL Data Analyst pursuing an Engineering Master's Degree to Data Scientist |
Data Science Report | Mission is to help guide & advance careers in Data Science & Analytics |
Data Science Tips | Tips and Tricks for Data Scientists around the world! #datascience #bigdata |
Data Vizzard | DataViz, Security, Military |
DataScienceX | |
deeplearning4j | |
DJ Patil | White House Data Chief, VP @ RelateIQ. |
Domino Data Lab | |
Drew Conway | Data nerd, hacker, student of conflict. |
Emilio Ferrara | #Networks, #MachineLearning and #DataScience. I work on #Social Media. Postdoc at @IndianaUniv |
Erin Bartolo | Running with #BigData--enjoying a love/hate relationship with its hype. @iSchoolSU #DataScience Program Mgr. |
Greg Reda | Working @ GrubHub about data and pandas |
Gregory Piatetsky | KDnuggets President, Analytics/Big Data/Data Mining/Data Science expert, KDD & SIGKDD co-founder, was Chief Scientist at 2 startups, part-time philosopher. |
Hadley Wickham | Chief Scientist at RStudio, and an Adjunct Professor of Statistics at the University of Auckland, Stanford University, and Rice University. |
Hakan Kardas | Data Scientist |
Hilary Mason | Data Scientist in Residence at @accel. |
Jeff Hammerbacher | ReTweeting about data science |
John Myles White | Scientist at Facebook and Julia developer. Author of Machine Learning for Hackers and Bandit Algorithms for Website Optimization. Tweets reflect my views only. |
Juan Miguel Lavista | Principal Data Scientist @ Microsoft Data Science Team |
Julia Evans | Hacker - Pandas - Data Analyze |
Kenneth Cukier | The Economist's Data Editor and co-author of Big Data (http://www.big-data-book.com/). |
Kevin Davenport | Organizer of https://www.meetup.com/San-Diego-Data-Science-R-Users-Group/ |
Kevin Markham | Data science instructor, and founder of Data School |
Kim Rees | Interactive data visualization and tools. Data flaneur. |
Kirk Borne | DataScientist, PhD Astrophysicist, Top #BigData Influencer. |
Linda Regber | Data story teller, visualizations. |
Luis Rei | PhD Student. Programming, Mobile, Web. Artificial Intelligence, Intelligent Robotics Machine Learning, Data Mining, Natural Language Processing, Data Science. |
Mark Stevenson | Data Analytics Recruitment Specialist at Salt (@SaltJobs) Analytics - Insight - Big Data - Datascience |
Matt Harrison | Opinions of full-stack Python guy, author, instructor, currently playing Data Scientist. Occasional fathering, husbanding, organic gardening. |
Matthew Russell | Mining the Social Web. |
Mert Nuhoğlu | Data Scientist at BizQualify, Developer |
Monica Rogati | Data @ Jawbone. Turned data into stories & products at LinkedIn. Text mining, applied machine learning, recommender systems. Ex-gamer, ex-machine coder; namer. |
Noah Iliinsky | Visualization & interaction designer. Practical cyclist. Author of vis books: https://www.oreilly.com/pub/au/4419 |
Paul Miller | Cloud Computing/ Big Data/ Open Data Analyst & Consultant. Writer, Speaker & Moderator. Gigaom Research Analyst. |
Peter Skomoroch | Creating intelligent systems to automate tasks & improve decisions. Entrepreneur, ex Principal Data Scientist @LinkedIn. Machine Learning, ProductRei, Networks |
Prash Chan | Solution Architect @ IBM, Master Data Management, Data Quality & Data Governance Blogger. Data Science, Hadoop, Big Data & Cloud. |
Quora Data Science | Quora's data science topic |
R-Bloggers | Tweet blog posts from the R blogosphere, data science conferences and (!) open jobs for data scientists. |
Rand Hindi | |
Randy Olson | Computer scientist researching artificial intelligence. Data tinkerer. Community leader for @DataIsBeautiful. #OpenScience advocate. |
Recep Erol | Data Science geek @ UALR |
Ryan Orban | Data scientist, genetic origamist, hardware aficionado |
Sean J. Taylor | Social Scientist. Hacker. Facebook Data Science Team. Keywords: Experiments, Causal Inference, Statistics, Machine Learning, Economics. |
Silvia K. Spiva | #DataScience at Cisco |
Harsh B. Gupta | Data Scientist at BBVA Compass |
Spencer Nelson | Data nerd |
Talha Oz | Enjoys ABM, SNA, DM, ML, NLP, HI, Python, Java. Top percentile kaggler/data scientist |
Tasos Skarlatidis | Complex Event Processing, Big Data, Artificial Intelligence and Machine Learning. Passionate about programming and open-source. |
Terry Timko | InfoGov; Bigdata; Data as a Service; Data Science; Open, Social & Business Data Convergence |
Tony Baer | IT analyst with Ovum covering Big Data & data management with some systems engineering thrown in. |
Tony Ojeda | Data Scientist , Author , Entrepreneur. Co-founder @DataCommunityDC. Founder @DistrictDataLab. #DataScience #BigData #DataDC |
Vamshi Ambati | Data Science @ PayPal. #NLP, #machinelearning; PhD, Carnegie Mellon alumni (Blog: https://allthingsds.wordpress.com ) |
Wes McKinney | Pandas (Python Data Analysis library). |
WileyEd | Senior Manager - @Seagate Big Data Analytics @McKinsey Alum #BigData + #Analytics Evangelist #Hadoop, #Cloud, #Digital, & #R Enthusiast |
WNYC Data News Team | The data news crew at @WNYC. Practicing data-driven journalism, making it visual and showing our work. |
Alexey Grigorev | Data science author |
Scott Hanselman | Programmer Blogger |
- AI Digest. A weekly newsletter to keep up to date with AI, machine learning, and data science. Archive.
- DataTalks.Club. A weekly newsletter about data-related things. Archive.
- The Analytics Engineering Roundup. A newsletter about data science. Archive.
-
Andrew Ng: Deep Learning, Self-Taught Learning and Unsupervised Feature Learning
-
Interview with Google's AI and Deep Learning 'Godfather' Geoffrey Hinton
-
Data School - Data Science Education
-
Google DeepMind co-founder Shane Legg - Machine Super Intelligence
-
mlops.community - Interviews of industry experts about production ML
-
ML Street Talk - Unabashedly technical and non-commercial, so you will hear no annoying pitches.
Some data mining competition platforms
- Academic Torrents
- hadoopilluminated.com
- data.gov - The home of the U.S. Government's open data
- United States Census Bureau
- usgovxml.com
- enigma.com - Navigate the world of public data - Quickly search and analyze billions of public records published by governments, companies and organizations.
- datahub.io
- aws.amazon.com/datasets
- datacite.org
- The official portal for European data
- quandl.com - Get the data you need in the form you want; instant download, API or direct to your app.
- figshare.com
- GeoLite Legacy Downloadable Databases
- Quora's Big Datasets Answer
- Public Big Data Sets
- Kaggle Datasets
- A Deep Catalog of Human Genetic Variation
- A community-curated database of well-known people, places, and things
- Google Public Data
- World Bank Data
- NYC Taxi data
- Open Data Philly Connecting people with data for Philadelphia
- grouplens.org Sample movie (with ratings), book and wiki datasets
- UC Irvine Machine Learning Repository - contains data sets good for machine learning
- research-quality data sets by Hilary Mason
- National Climatic Data Center - NOAA
- ClimateData.us (related: U.S. Climate Resilience Toolkit)
- r/datasets
- MapLight - provides a variety of data free of charge for uses that are freely available to the general public. Click on a data set below to learn more
- GHDx - Institute for Health Metrics and Evaluation - a catalog of health and demographic datasets from around the world and including IHME results
- St. Louis Federal Reserve Economic Data - FRED
- New Zealand Institute of Economic Research – Data1850
- Open Data Sources
- UNICEF Data
- undata
- NASA SocioEconomic Data and Applications Center - SEDAC
- The GDELT Project
- Sweden, Statistics
- Github free data source list
- StackExchange Data Explorer - an open source tool for running arbitrary queries against public data from the Stack Exchange network.
- SocialGrep - a collection of open Reddit datasets.
- San Fransisco Government Open Data
- IBM Blog about open data
- IBM Asset Dataset
- Open data Index
- Public Git Archive
- GHTorrent
- Microsoft Research Open Data
- Open Government Data Platform India
- Google Dataset Search (beta)
- NAYN.CO Turkish News with categories
- Covid-19
- Covid-19 Google
- Enron Email Dataset
- 5000 Images of Clothes
-
Other amazingly awesome lists can be found in the awesome-awesomeness
-
Awesome Drug Synergy, Interaction and Polypharmacy Prediction
-
[Kaggles Discussions] (https://www.kaggle.com/discussion)
-
8 Clustering Algorithms in Machine Learning that All Data Scientists Should Know
-
[DataScience Salon Community] (https://community.datascience.salon/)
-
[ML AI] (http://ml-ai-invite.herokuapp.com/)
-
[Vaticle] (https://blog.vaticle.com/)
-
[CS career questions] (https://www.reddit.com/r/cscareerquestions/)
-
[leetcode] (https://leetcode.com/discuss/interview-question?currentPage=1&orderBy=hot&query=)
-
[Algorithms course] (https://www.youtube.com/watch?v=BBpAmxU_NQo)
-
[Code Project Algorithm Communitiy] (https://www.codeproject.com/Forums/326859/Algorithms)
-
https://jovian.ai/learn/data-structures-and-algorithms-in-python