-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Notebooks for Kaggle seizure prediction competition
- Loading branch information
dafnevk
committed
Oct 10, 2016
1 parent
f88f1f3
commit 2e264af
Showing
2 changed files
with
1,107 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 17, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import numpy as np \n", | ||
"import pandas as pd\n", | ||
"from scipy.io import loadmat\n", | ||
"from keras.utils.np_utils import to_categorical" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"path_to_train = '/media/sf_VBox_Shared/timeseries/KaggleEEG/train_1/'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def mat_to_data(path, max_timesteps=None):\n", | ||
" try :\n", | ||
" mat = loadmat(path)\n", | ||
" names = mat['dataStruct'].dtype.names\n", | ||
" ndata = {n: mat['dataStruct'][n][0, 0] for n in names}\n", | ||
" if max_timesteps is None:\n", | ||
" return ndata['data']\n", | ||
" else:\n", | ||
" return ndata['data'][:max_timesteps,:]\n", | ||
" except :\n", | ||
" return None" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"fnames = os.listdir(path_to_train)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"fnames_split = [fname.split('_') for fname in fnames if fname[-4:]=='.mat']\n", | ||
"metadata = pd.DataFrame([{'patient':int(f[0]), 'segment':int(f[1]), 'class':int(f[2][0])} for f in fnames_split])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 22, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"nr_val = 10*6" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 23, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"metadata_0 = metadata[metadata['class']==0]\n", | ||
"metadata_1 = metadata[metadata['class']==1]\n", | ||
"\n", | ||
"nr_segments_0 = metadata_0['segment']" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 24, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"np.random.seed(123)\n", | ||
"ind_0 = metadata_0.sort_values('segment').index\n", | ||
"ind_1 = metadata_1.sort_values('segment').index\n", | ||
"val_ind = np.random.permutation(ind_0[-nr_val:].append( ind_1[-nr_val:]))\n", | ||
"train_ind = np.random.permutation(ind_0[:-nr_val].append(ind_1[:-nr_val]))[:100]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 25, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"def read_data(filenames, path_to_train, max_timesteps=None):\n", | ||
" mfiles = [mat_to_data(os.path.join(path_to_train, fname), max_timesteps) for fname in filenames]\n", | ||
" data = [m for m in mfiles if m is not None]\n", | ||
" return np.array(data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 26, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"X_val = read_data(pd.Series(fnames)[val_ind], path_to_train)\n", | ||
"y_val = metadata.loc[val_ind]['class']\n", | ||
"y_val_binary = to_categorical(np.array(y_val), 2)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 27, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"outdatapath = '/media/sf_VBox_Shared/timeseries/KaggleEEG/train_1/prepared/'\n", | ||
"np.save(outdatapath+'X_val', X_val)\n", | ||
"np.save(outdatapath+'y_val_binary', y_val_binary)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 32, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"X_train = read_data(pd.Series(fnames)[train_ind], path_to_train, max_timesteps=2400)\n", | ||
"y_train = metadata.loc[train_ind]['class']\n", | ||
"y_train_binary = to_categorical(np.array(y_train), 2)\n", | ||
"np.save(outdatapath+'X_train', X_train)\n", | ||
"np.save(outdatapath+'y_train_binary', y_train_binary)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 29, | ||
"metadata": { | ||
"collapsed": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(100, 24000, 16)" | ||
] | ||
}, | ||
"execution_count": 29, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"X_train.shape" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 30, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"np.save(outdatapath+'y_val_binary', y_val_binary)\n", | ||
"np.save(outdatapath+'y_train_binary', y_train_binary)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"collapsed": true | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.5.2" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |
Oops, something went wrong.