Skip to content

dispatch job

dispatch job #384

Workflow file for this run

name: dispatch job
on:
workflow_dispatch:
inputs:
repo:
description: 'The https github url for the recipe feedstock'
required: true
ref:
description: 'The tag or branch to target in your recipe repo'
required: true
default: 'main'
feedstock_subdir:
description: 'The subdir of the feedstock directory in the repo'
required: true
default: 'feedstock'
spark_params:
description: 'space delimited --conf values: https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-spark.html'
required: true
default: '--conf spark.executor.cores=16 --conf spark.executor.memory=60G --conf spark.executor.memoryOverhead=60G --conf spark.driver.memory=10G --conf spark.driver.memoryOverhead=4G --conf spark.shuffle.file.buffer=64k --conf spark.default.parallelism=1280 --conf spark.emr-serverless.executor.disk=200G --conf spark.hadoop.hive.metastore.client.factory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory --conf spark.emr-serverless.driverEnv.JAVA_HOME=/usr/lib/jvm/java-17-amazon-corretto.x86_64/ --conf spark.executorEnv.JAVA_HOME=/usr/lib/jvm/java-17-amazon-corretto.x86_64/'
job_name:
description: 'Name the EMR job'
required: true
permissions:
id-token: write # This is required for requesting the JWT
contents: read # This is required for actions/checkout
jobs:
name-job:
runs-on: ubuntu-latest
outputs:
repo_name: ${{ steps.string_manipulation.outputs.result }}
steps:
- name: manipuluate strings
id: string_manipulation
run: |
repo_name=$(basename -s .git "${{ github.event.inputs.repo }}")
echo "result=$repo_name" >> $GITHUB_OUTPUT
run-job:
if: contains('["ranchodeluxe","abarciauskas-bgse", "norlandrhagen", "sharkinsspatial", "moradology", "thodson-usgs"]', github.actor)
name: kickoff job ${{ needs.name-job.outputs.repo_name }}@${{ github.event.inputs.ref }}
needs: name-job
environment: veda-smce
outputs:
job_name: ${{ steps.report_ids.outputs.job_name }}
job_id: ${{ steps.report_ids.outputs.job_id }}
runs-on: ubuntu-latest
steps:
- name: checkout repository
uses: actions/checkout@v3
- name: configure aws credentials
uses: aws-actions/configure-aws-credentials@v3
with:
role-to-assume: arn:aws:iam::444055461661:role/github-actions-role-eodc
role-session-name: veda-pforge-run-job
role-duration-seconds: 3600
aws-region: us-west-2
- name: set up python 3.10 and cache pip deps
uses: actions/setup-python@v3
with:
python-version: '3.10'
cache: 'pip' # caching pip dependencies
- run: pip install -r .github/workflows/requirements.txt
- name: echo inputs to user
run: |
echo "Manually triggered workflow": \
${{ github.event.inputs.repo }} \
${{ github.event.inputs.ref }} \
${{ github.event.inputs.feedstock_subdir}} \
${{ github.event.inputs.parallelism }}
- name: install zip
uses: montudor/action-zip@v1
- name: submit job to emr serverless
id: executejob
continue-on-error: true
run: |
# TODO: make submit_spark_job.py or some other config.py checkout, build env and package on s3
# before submission
python .github/workflows/submit_spark_job.py \
--name=${{ github.event.inputs.job_name }} \
--application-id="00firgpmjusj5e0l" \
--execution-role-arn="arn:aws:iam::444055461661:role/veda-data-reader-dev" \
--entry-point="s3://veda-pforge-emr-input-scripts-v4/runwrapper.py" \
--entry-point-arguments="${{ github.event.inputs.repo }} ${{ github.event.inputs.ref }} ${{ github.event.inputs.feedstock_subdir }}" \
--spark-submit-parameters="${{ github.event.inputs.spark_params }}"
env:
REPO: ${{ github.event.inputs.repo }}
REF: ${{ github.event.inputs.ref }}
FEEDSTOCK_SUBDIR: ${{ github.event.inputs.feedstock_subdir }}
PARALLELISM_OPTION: ${{ github.event.inputs.parallelism }}
JOB_NAME: ${{ github.event.inputs.job_name }}
- name: cleanup if submission failed
if: steps.executejob.outcome == 'failure'
run: |
echo "The previous command failed. Running cleanup logic..."
# force GH action to show failed result
exit 128
- name: echo job metadata
id: report_ids
run: |
echo '############ CW DASHBOARD ################'
echo "https://us-west-2.console.aws.amazon.com/cloudwatch/home?region=us-west-2#dashboards/dashboard/veda-pangeo-forge-emr-jobs"
echo '############ JOB ID and JOB DASHBOARD ################'
python .github/workflows/submit_spark_job.py \
--name="whatever" \
--application-id="00firgpmjusj5e0l" \
--execution-role-arn="arn:aws:iam::444055461661:role/veda-data-reader-dev" \
--entry-point="s3://veda-pforge-emr-input-scripts-v4/runwrapper.py" \
--workflow="getjob"
# monitor-job:
# runs-on: ubuntu-latest
# name: monitor job ${{ needs.name-job.outputs.repo_name }}@${{ github.event.inputs.ref }}
# environment: veda-smce
# needs: [name-job, run-job]
# steps:
# - name: Configure AWS credentials
# uses: aws-actions/configure-aws-credentials@v3
# with:
# role-to-assume: arn:aws:iam::444055461661:role/github-actions-role-eodc
# role-session-name: veda-pforge-monitor-job
# role-duration-seconds: 43200 # note this has to match our timeout-minutes below for monitoring
# aws-region: us-west-2