Skip to content

Aggify | generate MongoDB aggregation pipelines, designed to work seamlessly with Mongoengine

SeYeD edited this page Oct 31, 2023 · 1 revision

Aggify

Aggify is a Python library for generating MongoDB aggregation pipelines, designed to work seamlessly with Mongoengine. This library simplifies the process of constructing complex MongoDB queries and aggregations using an intuitive and organized interface.

Features

  • Programmatically build MongoDB aggregation pipelines.
  • Filter, project, group, and perform various aggregation operations with ease.
  • Supports querying nested documents and relationships defined using Mongoengine.
  • Encapsulates aggregation stages for a more organized and maintainable codebase.
  • Designed to simplify the process of constructing complex MongoDB queries.

Github

github.com/Aggify/aggify

Installation

You can install Aggify using pip:

pip install aggify

Sample Usage

Here's a code snippet that demonstrates how to use Aggify to construct a MongoDB aggregation pipeline:

from mongoengine import Document, fields


class AccountDocument(Document):
    username = fields.StringField()
    display_name = fields.StringField()
    phone = fields.StringField()
    is_verified = fields.BooleanField()
    disabled_at = fields.LongField()
    deleted_at = fields.LongField()
    banned_at = fields.LongField()

class PostDocument(Document):
    owner = fields.ReferenceField('AccountDocument', db_field='owner_id')
    caption = fields.StringField()
    location = fields.StringField()
    comment_disabled = fields.BooleanField()
    stat_disabled = fields.BooleanField()
    hashtags = fields.ListField()
    archived_at = fields.LongField()
    deleted_at = fields.LongField()

Aggify query:

from aggify import Aggify, Q, F

query = Aggify(PostDocument)

query.filter(deleted_at=None, caption__contains='Aggify').order_by('-_id').lookup(
        AccountDocument, query=[
            Q(_id__exact='owner') & Q(deleted_at=None),
            Q(is_verified__exact=True)
        ], let=['owner'], as_name='owner'
    ).filter(owner__ne=[]).add_fields({
        "aggify": "Aggify is lovely",
    }
    ).project(caption=0).out("post").pipelines

Mongoengine equivalent query:

[
        {
            '$match': {
                'caption': {
                    '$options': 'i',
                    '$regex': '.*Aggify.*'
                },
                'deleted_at': None
            }
        },
        {
            '$sort': {
                '_id': -1
            }
        },
        {
            '$lookup': {
                'as': 'owner',
                'from': 'account',
                'let': {
                    'owner': '$owner_id'
                },
                'pipeline': [
                    {
                        '$match': {
                            '$expr': {
                                '$and': [
                                    {
                                        '$eq': ['$_id', '$$owner']
                                    },
                                    {
                                        'deleted_at': None
                                    }
                                ]
                            }
                        }
                    },
                    {
                        '$match': {
                            '$expr': {
                                '$eq': ['$is_verified', True]
                            }
                        }
                    }
                ]
            }
        },
        {
            '$match': {
                'owner': {'$ne': []}
            }
        },
        {
            '$addFields': {
                'aggify': {
                    '$literal': 'Aggify is lovely'
                }
            }
        },
        {
            '$project': {
                'caption': 0
                }
        },
        {
            '$out': 'post'
        }
]

In the sample usage above, you can see how Aggify simplifies the construction of MongoDB aggregation pipelines by allowing you to chain filters, lookups, and other operations to build complex queries. For more details and examples, please refer to the documentation and codebase.