Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/shap dependence profile #11

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -198,7 +198,7 @@ Selected intervals:
```
## References

* [Original Safe algorithm](https://mi2datalab.github.io/SAFE/index.html), implemented in R
* [Original Safe algorithm](https://ModelOriented.github.io/SAFE/index.html), implemented in R
* [ruptures library](https://github.com/deepcharles/ruptures), used for finding changepoints
* [kneed library](https://github.com/arvkevi/kneed), used for cutting hierarchical tree
* [SAFE article](https://arxiv.org/abs/1902.11035) - article about SAFE algorithm, including benchmark results using SAFE library
Expand Down
67 changes: 44 additions & 23 deletions SafeTransformer/SafeTransformer.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,14 @@
import numpy as np
import ruptures as rpt
from sklearn.base import TransformerMixin
import pandas as pd
import sys
import shap

from sklearn.exceptions import NotFittedError
from scipy.cluster.hierarchy import ward, cut_tree
from kneed import KneeLocator
import sys
from sklearn.base import TransformerMixin
from os import error


class Variable():
Expand All @@ -18,36 +21,50 @@ def __init__(self, name, index):

class NumericVariable(Variable):

def __init__(self, name, index, penalty, pelt_model, no_changepoint_strategy='median'):
def __init__(self, name, index, penalty, pelt_model, no_changepoint_strategy='median', dependence_method = 'pdp'):
super().__init__(name, index)
self.changepoints = []
self.penalty = penalty
self.pelt_model = pelt_model
self.changepoint_values = []
self.no_changepoint_strategy = no_changepoint_strategy
self.dependence_method = dependence_method

def _get_partial_dependence(self, model, X, grid_resolution=1000):
def _get_partial_dependence(self, model, X, grid_resolution=1000, dependence_method='pdp'):
axes = []
pdp = []
points = np.linspace(min(X.loc[:, self.original_name]), max(
X.loc[:, self.original_name]), grid_resolution)
X_copy = X.copy()
for point in points:
axes.append(point)
X_copy.loc[:, self.original_name] = point
if(hasattr(model, 'predict_proba')):
predictions = model.predict_proba(X_copy)
else:
predictions = model.predict(X_copy)
val = np.mean(predictions, axis=0)
pdp.append(val)
pdp = []
if dependence_method == 'pdp':
points = np.linspace(min(X.loc[:, self.original_name]), max(
X.loc[:, self.original_name]), grid_resolution)
X_copy = X.copy()
for point in points:
axes.append(point)
X_copy.loc[:, self.original_name] = point
if(hasattr(model, 'predict_proba')):
predictions = model.predict_proba(X_copy)
else:
predictions = model.predict(X_copy)
val = np.mean(predictions, axis=0)
pdp.append(val)
elif dependence_method == "shap":
explainer = shap.Explainer(model)
shap_values = explainer.shap_values(X)
if type(shap_values) is list:
shap_values = shap_values[0]
axes = np.unique(X.loc[:, self.original_name])
for value in axes:
mean_shap = np.mean([shap_values[idx, self.original_index] for idx in range(len(axes)) if axes[idx] == value])
pdp.append(mean_shap)

else:
raise ValueError("Unknown dependence method, use 'pdp' or 'shap'.")
return np.array(pdp), axes

def fit(self, model, X, verbose):
if verbose:
print('Fitting variable:' + str(self.original_name))
pdp, axis = self._get_partial_dependence(model, X, grid_resolution=1000)
algo = rpt.Pelt(model=self.pelt_model).fit(pdp)
pdp, axis = self._get_partial_dependence(model, X, grid_resolution=1000, dependence_method=self.dependence_method)
algo = rpt.Pelt(model=self.pelt_model, min_size=2, jump=2).fit(pdp)
self.changepoints = algo.predict(pen=self.penalty)
self.changepoint_values = [axis[i] for i in self.changepoints[:-1]]
if not self.changepoint_values and self.no_changepoint_strategy == 'median':
Expand Down Expand Up @@ -145,7 +162,7 @@ def transform(self, X, verbose):
ret = np.zeros([X.shape[0], ret_len])
for row_num in range(dummies.shape[0]):
if not np.sum(dummies.iloc[row_num, :]) == 0:
idx = np.argwhere(dummies.iloc[row_num, :] == 1)[0]
idx = np.argwhere(dummies.iloc[row_num, :].to_numpy() == 1)[0]
if self.clusters[idx + 1] > 0:
ret[row_num, self.clusters[idx + 1] - 1] = 1
return pd.DataFrame(ret, columns=self.new_names[1:])
Expand Down Expand Up @@ -203,12 +220,13 @@ class SafeTransformer(TransformerMixin):
:param penalty: Penalty corresponding to adding a new changepoint. The higher the value of penalty the smaller nunber of levels of transformed variableswill be created (Default value = 3)
:param pelt_model: Cost function used in pelt algorith, possible values: 'l2', 'l1', 'rbf' (Default value = 'l2')
:param model_params: Dictionary of paramters passed to fit method of surrogate model. Only used if passed surrogate model is not alreedy fitted.

:param dependence_method" Method of partial dependence fitting, possible values: 'pdp', 'shap' (Default value = 'pdp').

"""

categorical_dtypes = ['category', 'object']

def __init__(self, model, penalty=3, pelt_model='l2', model_params={}, no_changepoint_strategy='median'):
def __init__(self, model, penalty=3, pelt_model='l2', model_params={}, no_changepoint_strategy='median', dependence_method = 'pdp'):
"""
Initialize new transformer instance

Expand All @@ -217,13 +235,16 @@ def __init__(self, model, penalty=3, pelt_model='l2', model_params={}, no_change
:param pelt_model: Cost function used in pelt algorith, possible values: 'l2', 'l1', 'rbf' (Default value = 'l2')
:param model_params: Dictionary of parameters passed to fit method of surrogate model. Only used if passed surrogate model is not alreedy fitted.
:param no_changepoint_strategy: String specifying strategy to take, when no changepoint was detected. Should be one of: 'median', 'no_value'. If median is chosen, then there will be one changepoint set to 'median' value of a column. If 'no_value' is specified column will be removed. Default value = 'median'.
:param dependence_method" Method of partial dependence fitting, possible values: 'pdp', 'shap' (Default value = 'pdp').

"""
self.variables = []
self.model = model
self.penalty = penalty
self.pelt_model = pelt_model
self.model_params = model_params
self.is_fitted = False
self.dependence_method = dependence_method
if no_changepoint_strategy != 'median' and no_changepoint_strategy != 'no_value':
raise ValueError('Incorrect no changepoint strategy value. Should be one of: median or no_value.')
self.no_changepoint_strategy = no_changepoint_strategy
Expand Down Expand Up @@ -259,7 +280,7 @@ def fit(self, X, y=None, verbose=False):
X = pd.concat([X.iloc[:,range(dummy_index)], dummies, X.iloc[:, range(dummy_index+1, len(X.columns))]], axis=1)
self.variables.append(CategoricalVariable(name, idx, list(dummies), levels=levels))
else:
self.variables.append(NumericVariable(name, idx, self.penalty, self.pelt_model, self.no_changepoint_strategy))
self.variables.append(NumericVariable(name, idx, self.penalty, self.pelt_model, self.no_changepoint_strategy, self.dependence_method))
if not self._is_model_fitted(X):
self.model.fit(X, y, **self.model_params)
for variable in self.variables:
Expand Down
140 changes: 140 additions & 0 deletions examples/SHAP_dependence.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from SafeTransformer import SafeTransformer\n",
"from sklearn.ensemble import GradientBoostingRegressor\n",
"from sklearn.linear_model import LinearRegression\n",
"import numpy as np\n",
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.metrics import mean_squared_error\n",
"from sklearn.pipeline import Pipeline"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"apartments = pd.read_csv('apartments.csv', index_col=0)\n",
"X_ap = apartments.drop(columns='m2.price')\n",
"y = apartments['m2.price']"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"X = X_ap.copy()\n",
"colnames = list(X)\n",
"for idx, name in enumerate(colnames):\n",
" if str(X.loc[:, name].dtype) in ['category', 'object']:\n",
" dummies = pd.get_dummies(X.loc[:, name], prefix=name, drop_first=True)\n",
" dummy_index = X.columns.get_loc(name)\n",
" X = pd.concat([X.iloc[:,range(dummy_index)], dummies, X.iloc[:, range(dummy_index+1, len(X.columns))]], axis=1)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, X_lin_train, X_lin_test, y_train, y_test = train_test_split(X_ap, X, y)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"90\n",
"90\n",
"130\n",
"130\n",
"10\n",
"10\n",
"6\n",
"6\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<SafeTransformer.SafeTransformer.SafeTransformer at 0x7f58f0243da0>"
]
},
"metadata": {},
"execution_count": 5
}
],
"source": [
"surrogate_model = GradientBoostingRegressor(\n",
" n_estimators=1000,\n",
" max_depth=4,\n",
" learning_rate=0.1,\n",
" loss='huber'\n",
")\n",
"safe_transformer = SafeTransformer(surrogate_model, penalty = 10, dependence_method = \"shap\")\n",
"safe_transformer.fit(X_train, y_train)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Numerical Variable construction.year\nSelected intervals:\n\t[-Inf, 1922.00)\n\t[1922.00, 1924.00)\n\t[1924.00, 1926.00)\n\t[1926.00, 1929.00)\n\t[1929.00, 1933.00)\n\t[1933.00, 1935.00)\n\t[1935.00, 1938.00)\n\t[1938.00, 1940.00)\n\t[1940.00, 1942.00)\n\t[1942.00, 1944.00)\n\t[1944.00, 1947.00)\n\t[1947.00, 1949.00)\n\t[1949.00, 1951.00)\n\t[1951.00, 1953.00)\n\t[1953.00, 1956.00)\n\t[1956.00, 1958.00)\n\t[1958.00, 1961.00)\n\t[1961.00, 1964.00)\n\t[1964.00, 1967.00)\n\t[1967.00, 1969.00)\n\t[1969.00, 1971.00)\n\t[1971.00, 1973.00)\n\t[1973.00, 1975.00)\n\t[1975.00, 1978.00)\n\t[1978.00, 1982.00)\n\t[1982.00, 1984.00)\n\t[1984.00, 1986.00)\n\t[1986.00, 1988.00)\n\t[1988.00, 1990.00)\n\t[1990.00, 1992.00)\n\t[1992.00, 1995.00)\n\t[1995.00, 1997.00)\n\t[1997.00, 1999.00)\n\t[1999.00, 2001.00)\n\t[2001.00, 2003.00)\n\t[2003.00, 2005.00)\n\t[2005.00, 2007.00)\n\t[2007.00, 2009.00)\n\t[2009.00, Inf)\nNumerical Variable surface\nSelected intervals:\n\t[-Inf, 23.00)\n\t[23.00, 25.00)\n\t[25.00, 28.00)\n\t[28.00, 31.00)\n\t[31.00, 34.00)\n\t[34.00, 37.00)\n\t[37.00, 39.00)\n\t[39.00, 41.00)\n\t[41.00, 44.00)\n\t[44.00, 46.00)\n\t[46.00, 48.00)\n\t[48.00, 50.00)\n\t[50.00, 52.00)\n\t[52.00, 54.00)\n\t[54.00, 56.00)\n\t[56.00, 58.00)\n\t[58.00, 60.00)\n\t[60.00, 63.00)\n\t[63.00, 66.00)\n\t[66.00, 68.00)\n\t[68.00, 70.00)\n\t[70.00, 73.00)\n\t[73.00, 75.00)\n\t[75.00, 78.00)\n\t[78.00, 80.00)\n\t[80.00, 83.00)\n\t[83.00, 85.00)\n\t[85.00, 87.00)\n\t[87.00, 89.00)\n\t[89.00, 91.00)\n\t[91.00, 93.00)\n\t[93.00, 95.00)\n\t[95.00, 98.00)\n\t[98.00, 100.00)\n\t[100.00, 102.00)\n\t[102.00, 105.00)\n\t[105.00, 107.00)\n\t[107.00, 109.00)\n\t[109.00, 112.00)\n\t[112.00, 114.00)\n\t[114.00, 116.00)\n\t[116.00, 118.00)\n\t[118.00, 121.00)\n\t[121.00, 124.00)\n\t[124.00, 126.00)\n\t[126.00, 128.00)\n\t[128.00, 131.00)\n\t[131.00, 133.00)\n\t[133.00, 135.00)\n\t[135.00, 137.00)\n\t[137.00, 139.00)\n\t[139.00, 141.00)\n\t[141.00, 144.00)\n\t[144.00, 146.00)\n\t[146.00, 148.00)\n\t[148.00, Inf)\nNumerical Variable floor\nSelected intervals:\n\t[-Inf, 4.00)\n\t[4.00, 6.00)\n\t[6.00, 8.00)\n\t[8.00, Inf)\nNumerical Variable no.rooms\nSelected intervals:\n\t[-Inf, 5.00)\n\t[5.00, Inf)\nCategorical Variable district\nCreated variable levels:\n\tBemowo, Bielany, Praga, Ursus, Ursynow, Wola -> Bemowo_Bielany_Praga_Ursus_Ursynow_Wola\n\tMokotow, Ochota, Zoliborz -> Mokotow_Ochota_Zoliborz\n\tSrodmiescie -> Srodmiescie\n"
]
}
],
"source": [
"safe_transformer.summary()"
]
}
],
"metadata": {
"kernelspec": {
"name": "python371jvsc74a57bd04a14d88addbefcb3d7fbbd2032e02fafd8dd0b3bd5861453f44d6a559c03a0d0",
"display_name": "Python 3.7.1 64-bit ('venv-safe')"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.1"
},
"metadata": {
"interpreter": {
"hash": "4a14d88addbefcb3d7fbbd2032e02fafd8dd0b3bd5861453f44d6a559c03a0d0"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
5 changes: 3 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

setuptools.setup(
name="safe-transformer",
version="0.0.4",
version="0.0.6",
author="Aleksandra Gacek, Piotr Luboń",
author_email="[email protected], [email protected]",
description="Build explainable ML models using surrogate models.",
Expand All @@ -19,7 +19,8 @@
'sklearn',
'pandas',
'scipy',
'kneed'
'kneed',
'shap'
],
classifiers=[
"Programming Language :: Python :: 3",
Expand Down