Skip to content

Commit

Permalink
Merge pull request #114 from MeteoSwiss/feature/AMAROC-768-nsc-flag
Browse files Browse the repository at this point in the history
AMAROC-768 add heigh cloud flag and allow NSC
  • Loading branch information
regDaniel authored Apr 10, 2024
2 parents 52d643f + d09d1f5 commit c2e5d23
Show file tree
Hide file tree
Showing 7 changed files with 149 additions and 34 deletions.
3 changes: 2 additions & 1 deletion .github/workflows/CI_pylinter.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,10 @@ jobs:
python-version: ${{ matrix.python-version }}

# Install any dependency we require
- name: Install dependancies
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install setuptools
shell: bash

# Here, let's install our module to make sure all the dependencies specified in setup.py are
Expand Down
2 changes: 2 additions & 0 deletions CHANGELOG
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,8 @@ All notable changes to ampycloud will be documented in this file.
The format is inspired from [Keep a Changelog](https://keepachangelog.com/en/1.0.0/).
This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [v1.1.0]
- [regDaniel, 2024-04-09] Add flag for clouds above (MSA + MSA_HIT_BUFFER) and allow for NSC in METAR message
## [v1.0.0]
### Added
- [regDaniel, 2023-11-09] Add minimum separation condition for grouping step
Expand Down
10 changes: 10 additions & 0 deletions docs/source/scope.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,16 @@ This has the following implications for ampycloud:
passing them to ampycloud, e.g. by removing them or by converting them to cloud base
heights.

* Note that regulation says that "if there are no clouds of operational significance
and no restriction on vertical visibility and the abbreviation 'CAVOK' is not
appropriate, the abbreviation 'NSC' should be used" (AMC1 MET.TR.205(e)(1)).
ampycloud cannot decide whether a 'CAVOK' is appropriate, and will therefore
always return 'NSC' if no clouds of operational significance are found. If no clouds
are detected at all by the ceilometers, ampycloud will return 'NCD'. Importantly,
users should bear in mind that ampycloud cannot handle CB and TCU cases,
such that any 'NCD'/'NSC' codes issued may need to be overwritten by the user in
certain situations.

* ampycloud can evidently be used for R&D work, but the code itself should not be
seen as an R&D platform.

Expand Down
88 changes: 64 additions & 24 deletions src/ampycloud/data.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
Copyright (c) 2021-2023 MeteoSwiss, contributors listed in AUTHORS.
Copyright (c) 2021-2024 MeteoSwiss, contributors listed in AUTHORS.
Distributed under the terms of the 3-Clause BSD License.
Expand Down Expand Up @@ -93,16 +93,29 @@ def _cleanup_pdf(self, data: pd.DataFrame) -> pd.DataFrame:
# Begin with a thorough inspection of the dataset
data = utils.check_data_consistency(data, req_cols=self.DATA_COLS)

# Then also drop any hits that is too high
# By default we set this flag to false and overwrite if enough hits are present
self._clouds_above_msa_buffer = False

# Drop any hits that are too high and check if they exceed the threshold for 1 OKTA
# if yes, set the flag clouds_above_msa_buffer to True
if self.msa is not None:
hit_alt_lim = self.msa + self.msa_hit_buffer
logger.info('Cropping hits above MSA+buffer: %s ft', str(hit_alt_lim))
# Type 1 or less hits above the cut threshold get turned to NaNs, to signal a
# non-detection below the MSA. Also change the hit type to 0 accordingly !
data.loc[data[(data.alt > hit_alt_lim) & (data.type <= 1)].index, 'type'] = 0
data.loc[data[(data.alt > hit_alt_lim) & (data.type <= 1)].index, 'alt'] = np.nan
# First layer and vervis hits above the cut threshold get turned to NaNs, to signal a
# non-detection below the MSA. Also change the hit type to 0 accordingly in order
# to create a "no hit detected" in the range of interest (i.e. below MSA).
above_msa_t1_or_less = data[(data.alt > hit_alt_lim) & (data.type <= 1)].index
data.loc[above_msa_t1_or_less, 'type'] = 0
data.loc[above_msa_t1_or_less, 'alt'] = np.nan
# Type 2 or more hits get cropped (there should be only 1 non-detection per time-stamp).
data = data.drop(data[(data.alt > hit_alt_lim) & (data.type > 1)].index)
above_msa_t2_or_more = data[(data.alt > hit_alt_lim) & (data.type > 1)].index
data = data.drop(above_msa_t2_or_more)
if len(above_msa_t1_or_less) + len(above_msa_t2_or_more) > self._prms['MAX_HITS_OKTA0']:
logger.info(
"Hits above MSA + MSA_HIT_BUFFER exceeded threshold MAX_HITS_OKTA0. Will add "
"flag 'high_clouds_detected' to indicate the presence of high clouds."
)
self._clouds_above_msa_buffer = True

return data

Expand Down Expand Up @@ -186,8 +199,10 @@ def __init__(self, data: pd.DataFrame, prms: Optional[dict] = None,
self._layers = None

@log_func_call(logger)
def data_rescaled(self, dt_mode: Optional[str] = None, alt_mode: Optional[str] = None,
dt_kwargs: Optional[dict] = None, alt_kwargs: Optional[dict] = None) -> pd.DataFrame:
def data_rescaled(
self, dt_mode: Optional[str] = None, alt_mode: Optional[str] = None,
dt_kwargs: Optional[dict] = None, alt_kwargs: Optional[dict] = None
) -> pd.DataFrame:
""" Returns a copy of the data, rescaled according to the provided parameters.
Args:
Expand Down Expand Up @@ -296,13 +311,12 @@ def _get_min_sep_for_altitude(self, altitude: float) -> float:
MIN_SEP_VALS
"""
if len(self.prms['MIN_SEP_LIMS']) != \
len(self.prms['MIN_SEP_VALS']) - 1:
raise AmpycloudError(
'"MIN_SEP_LIMS" must have one less item than "MIN_SEP_VALS".'
'Got MIN_SEP_LIMS %i and MIN_SEP_VALS %i',
(self.prms['MIN_SEP_LIMS'], self.prms['MIN_SEP_VALS'])
)
if len(self.prms['MIN_SEP_LIMS']) != len(self.prms['MIN_SEP_VALS']) - 1:
raise AmpycloudError(
'"MIN_SEP_LIMS" must have one less item than "MIN_SEP_VALS".'
f'Got MIN_SEP_LIMS {self.prms["MIN_SEP_LIMS"]} '
f'and MIN_SEP_VALS {self.prms["MIN_SEP_VALS"]}.',
)

min_sep_val_id = np.searchsorted(self.prms['MIN_SEP_LIMS'],
altitude)
Expand Down Expand Up @@ -361,12 +375,11 @@ def _setup_sligrolay_pdf(self, which: str = 'slices') -> tuple[pd.DataFrame, npt
]

# We want to raise early if 'which' is unknown.
if not which in ['slices', 'groups', 'layers']:
if which not in ['slices', 'groups', 'layers']:
raise AmpycloudError(
'Trying to initialize a data frame for %s '
f'Trying to initialize a data frame for {which}, '
'which is unknown. Keyword arg "which" must be one of'
'"slices", "groups" or "layers"'
%which
)

# If I am looking at the slices, also keep track of whether they are isolated, or not.
Expand Down Expand Up @@ -519,9 +532,9 @@ def _calculate_sligrolay_base_height(
# Which hits are in this sli/gro/lay ?
in_sligrolay = self.data[which[:-1]+'_id'] == cid
# Compute the base altitude
pdf.iloc[ind, pdf.columns.get_loc('alt_base')] = self._calculate_base_height_for_selection(
in_sligrolay,
)
pdf.iloc[
ind, pdf.columns.get_loc('alt_base')
] = self._calculate_base_height_for_selection(in_sligrolay,)
return pdf

@log_func_call(logger)
Expand Down Expand Up @@ -992,6 +1005,29 @@ def layers(self) -> pd.DataFrame:
identified by the layering algorithm. """
return self._layers

@property
def clouds_above_msa_buffer(self) -> bool:
""" Returns whether a number of hits exceeding the threshold for 1 okta is detected above
MSA + MSA_HIT_BUFFER.
Returns:
bool: whether high clouds were detected.
"""
return self._clouds_above_msa_buffer

def _ncd_or_nsc(self) -> str:
""" Return the METAR code for No Cloud Detected / No Significant Cloud.
Decision based on the attribute self._clouds_above_msa_buffer.
Returns:
str: 'NCD' or 'NSC'
"""
if self._clouds_above_msa_buffer:
return 'NSC'
return 'NCD'

def metar_msg(self, which: str = 'layers') -> str:
""" Construct a METAR-like message for the identified cloud slices, groups, or layers.
Expand Down Expand Up @@ -1025,7 +1061,7 @@ def metar_msg(self, which: str = 'layers') -> str:

# Deal with the 0 layer situation
if getattr(self, f'n_{which}') == 0:
return 'NCD'
return self._ncd_or_nsc()

# Deal with the situation where layers have been found ...
msg = sligrolay['code']
Expand All @@ -1036,6 +1072,10 @@ def metar_msg(self, which: str = 'layers') -> str:

# Here, deal with the situations when all clouds are above the MSA
if len(msg) == 0:
return 'NCD'
# first check if any significant clouds are in the interval [MSA, MSA+MSA_HIT_BUFFER]
sligrolay_in_buffer = sligrolay['significant'] * (sligrolay['alt_base'] >= msa_val)
if sligrolay_in_buffer.any():
return 'NSC' # and return a NSC as it implies that the cloud is above the MSA
return self._ncd_or_nsc() # else, check for CBH above MSA + MSA_HIT_BUFFER

return msg
12 changes: 6 additions & 6 deletions src/ampycloud/scaler.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,10 +221,10 @@ def convert_kwargs(vals: np.ndarray, fct: str, **kwargs: dict) -> dict:

if fct == 'shift-and-scale':
# In this case, the only data I may need to derive from the data is the shift.
if 'shift' in kwargs.keys():
if 'shift' in kwargs:
# Already set - do nothing
return kwargs
if 'mode' in kwargs.keys():
if 'mode' in kwargs:
if kwargs['mode'] == 'do':
kwargs['shift'] = np.nanmax(vals)
elif kwargs['mode'] == 'undo':
Expand All @@ -240,12 +240,12 @@ def convert_kwargs(vals: np.ndarray, fct: str, **kwargs: dict) -> dict:
if fct == 'minmax-scale':
# In this case, the challenge lies with identifying min_val and max_val, knowing that the
# user may specify a min_range value.
if 'min_val' in kwargs.keys() and 'max_val' in kwargs.keys():
if 'min_val' in kwargs and 'max_val' in kwargs:
# Already specified ... do nothing
return kwargs
if 'mode' in kwargs.keys():
if 'mode' in kwargs:
if kwargs['mode'] == 'do':
if 'min_range' in kwargs.keys():
if 'min_range' in kwargs:
min_range = kwargs['min_range']
kwargs.pop('min_range', None)
else:
Expand All @@ -260,7 +260,7 @@ def convert_kwargs(vals: np.ndarray, fct: str, **kwargs: dict) -> dict:
raise AmpycloudError(f"Mode unknown: {kwargs['mode']}")

# 'mode' not set -> will default to 'do'
if 'min_range' in kwargs.keys():
if 'min_range' in kwargs:
min_range = kwargs['min_range']
kwargs.pop('min_range', None)
else:
Expand Down
4 changes: 2 additions & 2 deletions test/ampycloud/test_core.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
Copyright (c) 2021-2022 MeteoSwiss, contributors listed in AUTHORS.
Copyright (c) 2021-2024 MeteoSwiss, contributors listed in AUTHORS.
Distributed under the terms of the 3-Clause BSD License.
Expand Down Expand Up @@ -82,7 +82,7 @@ def test_run():

# Test the ability to specific parameters locally only
out = run(mock_data, prms={'MSA': 0})
assert out.metar_msg() == 'NCD'
assert out.metar_msg() == 'NSC'
assert dynamic.AMPYCLOUD_PRMS['MSA'] is None

# Test that warnings are being raised if a bad parameter is being given
Expand Down
64 changes: 63 additions & 1 deletion test/ampycloud/test_data.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
"""
Copyright (c) 2021-2022 MeteoSwiss, contributors listed in AUTHORS.
Copyright (c) 2021-2024 MeteoSwiss, contributors listed in AUTHORS.
Distributed under the terms of the 3-Clause BSD License.
Expand Down Expand Up @@ -80,6 +80,33 @@ def test_ceilochunk_init():
reset_prms()


@mark.parametrize('alt,expected_flag', [
param(1000, False, id='low clouds'),
param(15000, True, id='high clouds'),
])
def test_clouds_above_msa_buffer_flag(alt: int, expected_flag: bool):
""" Test the high clouds flagging routine. """

dynamic.AMPYCLOUD_PRMS['MAX_HITS_OKTA0'] = 3
dynamic.AMPYCLOUD_PRMS['MSA'] = 10000
dynamic.AMPYCLOUD_PRMS['MSA_HIT_BUFFER'] = 1000

n_ceilos = 4
lookback_time = 1200
rate = 30
# Create some fake data to get started
# 1 very flat layer with no gaps
mock_data = mocker.mock_layers(
n_ceilos, lookback_time, rate, [
{'alt': alt, 'alt_std': 10, 'sky_cov_frac': 0.1, 'period': 100, 'amplitude': 0}
]
)
chunk = CeiloChunk(mock_data)
assert chunk.clouds_above_msa_buffer == expected_flag

reset_prms()


def test_ceilochunk_basic():
""" Test the basic methods of the CeiloChunk class. """

Expand Down Expand Up @@ -228,6 +255,41 @@ def test_ceilochunk_nocld():
assert chunk.metar_msg() == 'NCD'


@mark.parametrize('alt', [
param(10500, id='in buffer'),
param(15000, id='above buffer'),
])
def test_ceilochunk_highcld(alt):
""" Test the methods of CeiloChunks when high clouds are seen in the interval. """

dynamic.AMPYCLOUD_PRMS['MAX_HITS_OKTA0'] = 3
dynamic.AMPYCLOUD_PRMS['MSA'] = 10000
dynamic.AMPYCLOUD_PRMS['MSA_HIT_BUFFER'] = 1000

n_ceilos = 4
lookback_time = 1200
rate = 30
# Create some fake data to get started
# 1 very flat layer with no gaps
mock_data = mocker.mock_layers(
n_ceilos, lookback_time, rate,
[{'alt': alt, 'alt_std': 10, 'sky_cov_frac': 0.1, 'period': 100, 'amplitude': 0}]
)

# Instantiate a CeiloChunk entity ...
chunk = CeiloChunk(mock_data)

# Do the dance ...
chunk.find_slices()
chunk.find_groups()
chunk.find_layers()

# Assert the final METAR code is correct
assert chunk.metar_msg() == 'NSC'

reset_prms()


def test_ceilochunk_2lay():
""" Test the methods of CeiloChunks when 2 layers are seen in the interval. """

Expand Down

0 comments on commit c2e5d23

Please sign in to comment.