-
Notifications
You must be signed in to change notification settings - Fork 3
Dynamic Creator for Mersenne Twister
License
MersenneTwister-Lab/dcmt
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Dynamic Creator of Mersenne Twisters Ver. 0.6 (2009/12/15) 1. Overview This is a C library for "Dynamic Creator", which dynamically generates a parameter for a random number generator. Users can specify (1) the word size w of generated random integers (presently w=31,32 only) (2) the period (chosen from the list of Mersenne primes below), and (3) id-number. When these specifications are given to a function in this library, it searches for a set of parameters (stored in a struct type named mt_struct) of a recursion generating a random number sequence conforming to the specification. If we specify different id-numbers, then the set of yielded random number sequences should be highly independent. Each random number generator is a Mersenne Twister with specified size, which is very widely used and is proved to be a reliable source of pseudorandomness. 2. Compiling When you develop the tar file, you will find the following three files and three directories. README This file README.jp Japanese version of the above file VERSION Version information CHANGELOG Log of changes lib The library include The include file "dc.h" example Examples of C-codes To compile this library, do "cd lib" and "make lib". Then "libdcmt.a" will be created in the directory "lib", and the compilation for the library is done. To use the library, include "dc.h" in the include directory in your C-code source files, and link them with libdcmt.a when you compile the source. 3. The library functions =============== OLD INTERFACE =============== Old interface functions are not thread safe. Interface is same as old version, but we do not assure the results of the functions are the same as the results of old versions. void init_dc(uint32 seed) Initializes this library, i.e., initialize the internal random number generator of this library. One needs to call this function once, before using any of get_mt_parameter(), get_mt_parameter_id(), get_mt_parameters(). The seed may be any integer between 0 and 2^32-1, so 2^32 possible choices. If this function is called with one same seed, then the generated parameters are identical for any system, i.e., it is reproducible. NOTE: This function is not used in new interface. mt_struct *get_mt_parameter(int w, int p) Search for a set of parameters for random number generator. (We call such a parameter a "mt_struct parameter".) w is the number of bits in one word of generated random numbers (w=31 or 32 only). p is the exponent of the period. The period should be 2^p-1, but p must be an Mersenne exponent, i.e., 2^p-1 should be a prime. The list of usable p are as follows. 521 607 1279 2203 2281 3217 4253 4423 9689 9941 11213 19937 21701 23209 44497 This function returns a mt_struct parameter, when it finds one, and returns NULL, when it failed to find. The function genrand_mt() below will generate a random number sequence of w-bit integers with period 2^p-1, when this mt_struct parameter is passed. Depending on the machine's speed, it may take one minute or more in finding one mt_struct parameter even if p=521. The average time in the search is rapidly increasing with respect to p. For large p, it is expected to be O(p^3). mt_struct *get_mt_parameter_id(int w, int p, int id) This is similar to the above get_mt_parameter(). get_mt_parameter() admits only w and p, but this function takes one more parameter, called id, and generates a mt_struct parameter, in which id is embedded. id is an 16-bit integer. For different id's, the generated random number sequences are highly independent. (Mathematically saying, the characteristic polynomials of the recursion are coprime to each other.) mt_struct **get_mt_parameters(int w, int p, int max_id, int *count) This searches for a set of mt_struct parameters with id between start_id and max_id (start_id<=id<=max_id). Thus, it finds (max_id-start_id)+1 independent mt_struct parameters, and make them into an array, and return it. The maximum value of max_id is 2^16-1. This returns 'count', which is normally max_id - start_id + 1. If some parameters are found and then error occurs or cannot found new parameter, count will less than max_id - start_id + 1. Users should call free_mt_struct_array after using structs, unless This function returns NULL. =============== NEW INTERFACE =============== 'init_dc' function is not used in new interface. Instead, each function needs additional argument 'seed'. New interface functions are so-called thread safe or thread independent. mt_struct *get_mt_parameter_st(int w, int p, uint32_t seed) Thread safe version of 'get_mt_parameter'. mt_struct *get_mt_parameter_id_st(int w, int p, int id, uint32_t seed) Thread safe version of 'get_mt_parameter_id'. mt_struct **get_mt_parameters_st(int w, int p, int start_id, int max_id, uint32_t seed, int *count) Thread safe version of 'get_mt_parameters'. =============== COMMON INTERFACE =============== Following functions are used commonly in old interface and new interface. void sgenrand_mt(uint32_t seed, mt_struct *mts) One mt_struct parameter has the information on the recursion and the state vector. This function initializes this state vector in mts with the seed. Before using the random numbers on the mt_struct parameter mts, call this function once to initialize. The seed is any integer between 0 and 2^32-1, and each seed generates distinct sequences. uint32_t genrand_mt(mt_struct *mts) This returns a random number, generated from mts, by using the recursion specified in the mts, and the state vector inside mts. void free_mt_struct(mt_struct *mts); Free memories allocated by get_mt_parameter, get_mt_parameter_id,get_mt_parameter_st or get_mt_parameter_id_st. void free_mt_struct_array(mt_struct **mtss, int count); Free memories allocated by get_mt_parameters or get_mt_parameters_st. 4. Examples 4.1 example1 Move to the directory "example", and execute "make example1". Then an executable file "example1" will be created. Execute "example1", and wait for one minute. Then get_mt_parameter(32,521) will give a mt_struct parameter for a random number generator of 32-bit integers with period 2^521-1. (If it could not find one, then print "error".) This mt_struct parameter is stored in mts. Using this, by genrand_mt(mts), 100 random numbers will be generated and printed. 4.2 example2 Similarly to 4.1, in the directory example, execute "make example2" and obtain an executable file "example2". Execute "example2", and wait for five minutes. Then three mt_struct parameters of 32-bit and period 2^521-1. Each has id 0,1,999. Store these three mt_struct parameters in mts0, mts1, mts2. Using these, genrand_mt() generates three highly independent three random number sequnces. First tens of each sequence will be printed. 5. Caution This library was developed on Vine Linux 2.6R4. It is expected to work in most of 32-bit machines with a C99 compiler. This library is still under development, and may contain some serious bugs. Please keep this in your mind. Report the bugs to the authors, if you find any. 6. Comment and bug reports If you find any comments or bug, please kindly send an email to both of or one of [email protected] [email protected] The home page http:/www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html contains newest information on our random number generators, but will be rarely up-dated and frequently be down. 7. References [1] Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator", ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1, 1998, pp 3--30. [2] Makoto Matsumoto and Takuji Nishimura, "Dynamic Creation of Pseudorandom Number Generators", Monte Carlo and Quasi-Monte Carlo Methods 1998, Springer, 2000, pp 56--69.
About
Dynamic Creator for Mersenne Twister
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published