-
Notifications
You must be signed in to change notification settings - Fork 30
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
create 2step variational minimizer for excitation
- Loading branch information
1 parent
f301bb7
commit c220a40
Showing
1 changed file
with
145 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
from pyscf import lib | ||
import numpy as np | ||
from scipy import linalg | ||
from mrh.my_pyscf.lassi.citools import get_lroots | ||
|
||
def hess_ss (ham_pq, si): | ||
hs = np.dot (ham_pq, si) | ||
e = np.dot (si.conj (), hs) | ||
hess = ham_pq - (np.multiply.outer (si.conj (), si) * e) | ||
hs -= e*si | ||
hess -= np.multiply.outer (si.conj (), hs) | ||
hess -= np.multiply.outer (hs.conj (), si) | ||
hess += hess.conj ().T | ||
return hess | ||
|
||
def hess_us (ham_pq, si, lroots, nroots): | ||
nstates = ham_pq.shape[1] | ||
p = np.prod (lroots) | ||
hs = np.dot (ham_pq, si) | ||
si_p = si[:p].reshape (lroots[1], lroots[0]) | ||
hs_p = hs[:p].reshape (lroots[1], lroots[0]) | ||
h_px = ham_pq[:p].reshape (lroots[1], lroots[0], nstates) | ||
fu = np.dot (si_p.conj (), hs_p.T) | ||
fv = np.dot (si_p.conj ().T, hs_p) | ||
hess_us = np.multiply.outer (-(fu - fu.T), si + si.conj ()) | ||
hess_vs = np.multiply.outer (-(fv - fv.T), si + si.conj ()) | ||
dh = np.dot (si_p, h_px) | ||
hess_us += dh - dh.transpose (1,0,2) | ||
dh = np.dot (si_p.T, h_px.transpose (1,0,2)) | ||
hess_vs += dh - dh.transpose (1,0,2) | ||
idx_u = np.repeat (list (range (lroots[1])), lroots[0]) | ||
idx_v = np.tile (list (range (lroots[0])), lroots[1]) | ||
for i in range (nroots): | ||
delta_u = np.where (idx_u==i)[0] | ||
hess_us[i,:,delta_u] += hs_p[:,idx_v[delta_u]] | ||
hess_us[:,i,delta_u] -= hs_p[:,idx_v[delta_u]] | ||
hess_us = hess_us[nroots:,:nroots,:].reshape (-1,nstates) | ||
for i in range (nroots): | ||
delta_v = np.where (idx_v==i)[0] | ||
hess_vs[i,:,delta_v] += hs_p[idx_u[delta_v],:].T | ||
hess_vs[:,i,delta_v] -= hs_p[idx_u[delta_v],:].T | ||
hess_vs = hess_vs[nroots:,:nroots,:].reshape (-1,nstates) | ||
hess = np.append (hess_us, hess_vs, axis=0) | ||
return hess + hess.conj () | ||
|
||
def hess_uu (ham_pq, si, lroots, nroots): | ||
p = np.prod (lroots) | ||
hs = np.dot (ham_pq, si)[:p].reshape (lroots[1],lroots[0]) | ||
h_pp = ham_pq[:p,:p].reshape (lroots[1],lroots[0],lroots[1],lroots[0]) | ||
si_p = si[:p].reshape (lroots[1],lroots[0]) | ||
hess = lib.einsum ('im,jmln,kn->ijkl', si.conj (), h_pp, si) | ||
fu = np.dot (si_p.conj (), hs.T) | ||
for i in range (lroots[1]): | ||
hess[:,i,i,:] += fu | ||
hess -= hess.transpose (1,0,2,3) | ||
hess -= hess.transpose (0,1,3,2) | ||
nel = (lroots[1]-nroots)*nroots | ||
hess = hess[nroots:,:nroots,nroots:,:nroots].reshape (nel, nel) | ||
return hess + hess.conj () | ||
|
||
def hess_vv (ham_pq, si, lroots, nroots): | ||
p = np.prod (lroots) | ||
hs = np.dot (ham_pq, si)[:p].reshape (lroots[1],lroots[0]) | ||
h_pp = ham_pq[:p,:p].reshape (lroots[1],lroots[0],lroots[1],lroots[0]) | ||
si_p = si[:p].reshape (lroots[1],lroots[0]) | ||
hess = lib.einsum ('mi,mjnl,nk->ijkl', si.conj (), h_pp, si) | ||
fv = np.dot (si_p.conj ().T, hs) | ||
for i in range (lroots[1]): | ||
hess[:,i,i,:] += fv | ||
hess -= hess.transpose (1,0,2,3) | ||
hess -= hess.transpose (0,1,3,2) | ||
nel = (lroots[0]-nroots)*nroots | ||
hess = hess[nroots:,:nroots,nroots:,:nroots].reshape (nel, nel) | ||
return hess + hess.conj () | ||
|
||
def hess_uv (ham_pq, si, lroots, nroots): | ||
p = np.prod (lroots) | ||
hs = np.dot (ham_pq, si)[:p].reshape (lroots[1],lroots[0]) | ||
h_pp = ham_pq[:p,:p].reshape (lroots[1],lroots[0],lroots[1],lroots[0]) | ||
si_p = si[:p].reshape (lroots[1],lroots[0]) | ||
hess = lib.einsum ('im,jmnl,nk->ijkl', si.conj (), h_pp, si) | ||
hess += np.multiply.outer (si.conj (), hs).transpose (0,2,1,3) | ||
hess -= hess.transpose (1,0,2,3) | ||
hess -= hess.transpose (0,1,3,2) | ||
nelu = (lroots[1]-nroots)*nroots | ||
nelv = (lroots[0]-nroots)*nroots | ||
hess = hess[nroots:,:nroots,nroots:,:nroots].reshape (nelu, nelv) | ||
return hess + hess.conj () | ||
|
||
def hess (ham_pq, si, lroots, nroots): | ||
hess_uu = hess_uu (ham_pq, si, lroots, nroots) | ||
hess_uv = hess_uv (ham_pq, si, lroots, nroots) | ||
hess_vv = hess_vv (ham_pq, si, lroots, nroots) | ||
hess_uu = np.append ([np.append (hess_uu, hess_uv, axis=1), | ||
np.append (hess_uv.T, hess_vv, axis=1)], | ||
axis=0) | ||
hess_us = hess_us (ham_pq, si, lroots, nroots) | ||
hess_ss = hess_ss (ham_pq, si) | ||
hess = np.append ([np.append (hess_uu, hess_us, axis=1), | ||
np.append (hess_us.T, hess_ss, axis=1)], | ||
axis=0) | ||
return hess | ||
|
||
def grad (ham_pq, si, lroots, nroots): | ||
p = np.prod (lroots) | ||
hs = np.dot (ham_pq, si) | ||
e = np.dot (si.conj (), hs) | ||
grad_s = hs - e*si | ||
hs = hs[:p].reshape (lroots[1], lroots[0]) | ||
si = si[:p].reshape (lroots[1], lroots[0]) | ||
fu = np.dot (si.conj (), hs.T) | ||
grad_u = fu - fu.T | ||
grad_u = grad_u[nroots:,:nroots].ravel () | ||
fv = np.dot (si.conj ().T, hs) | ||
grad_v = fv - fv.T | ||
grad_v = grad_v[nroots:,:nroots].ravel () | ||
return np.concatenate ([grad_u, grad_v, grad_s]) | ||
|
||
def quadratic_step (ham_pq, ci1, si_p, si_q): | ||
nroots = len (si_p) | ||
lroots = get_lroots (ci1) | ||
si = np.zeros (lroots[::-1]) | ||
si[:nroots,:nroots] = np.diag (si_p) | ||
si = np.append (si.ravel (), si_q) | ||
x = linalg.solve (hess (ham_pq, si, lroots, nroots), | ||
-grad (ham_pq, si, lroots, nroots)) | ||
nelu = (lroots[1]-nroots)*nroots | ||
nelv = (lroots[0]-nroots)*nroots | ||
kappa_u = np.zeros ((lroots[1],lroots[1]), dtype=x.dtype) | ||
kappa_u[nroots:,:nroots] = x[:nelu].reshape ( | ||
lroots[1]-nroots, nroots) | ||
kappa_u -= kappa_u.T | ||
u = linalg.expm (kappa_u)[:,:nroots] | ||
kappa_v = np.zeros ((lroots[0],lroots[0]), dtype=x.dtype) | ||
kappa_u[nroots:,:nroots] = x[:nelv].reshape ( | ||
lroots[0]-nroots, nroots) | ||
kappa_v -= kappa_v.T | ||
vh = linalg.expm (kappa_v)[:,:nroots].conj ().T | ||
return u, vh | ||
|
||
|
||
|
||
|
||
|
||
|