forked from langgenius/dify
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Feat/vector db manage (langgenius#997)
Co-authored-by: jyong <[email protected]>
- Loading branch information
Showing
8 changed files
with
1,975 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
from typing import Optional, cast | ||
|
||
from langchain.embeddings.base import Embeddings | ||
from langchain.schema import Document, BaseRetriever | ||
from langchain.vectorstores import VectorStore, milvus | ||
from pydantic import BaseModel, root_validator | ||
|
||
from core.index.base import BaseIndex | ||
from core.index.vector_index.base import BaseVectorIndex | ||
from core.vector_store.milvus_vector_store import MilvusVectorStore | ||
from core.vector_store.weaviate_vector_store import WeaviateVectorStore | ||
from models.dataset import Dataset | ||
|
||
|
||
class MilvusConfig(BaseModel): | ||
endpoint: str | ||
user: str | ||
password: str | ||
batch_size: int = 100 | ||
|
||
@root_validator() | ||
def validate_config(cls, values: dict) -> dict: | ||
if not values['endpoint']: | ||
raise ValueError("config MILVUS_ENDPOINT is required") | ||
if not values['user']: | ||
raise ValueError("config MILVUS_USER is required") | ||
if not values['password']: | ||
raise ValueError("config MILVUS_PASSWORD is required") | ||
return values | ||
|
||
|
||
class MilvusVectorIndex(BaseVectorIndex): | ||
def __init__(self, dataset: Dataset, config: MilvusConfig, embeddings: Embeddings): | ||
super().__init__(dataset, embeddings) | ||
self._client = self._init_client(config) | ||
|
||
def get_type(self) -> str: | ||
return 'milvus' | ||
|
||
def get_index_name(self, dataset: Dataset) -> str: | ||
if self.dataset.index_struct_dict: | ||
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix'] | ||
if not class_prefix.endswith('_Node'): | ||
# original class_prefix | ||
class_prefix += '_Node' | ||
|
||
return class_prefix | ||
|
||
dataset_id = dataset.id | ||
return "Vector_index_" + dataset_id.replace("-", "_") + '_Node' | ||
|
||
|
||
def to_index_struct(self) -> dict: | ||
return { | ||
"type": self.get_type(), | ||
"vector_store": {"class_prefix": self.get_index_name(self.dataset)} | ||
} | ||
|
||
def create(self, texts: list[Document], **kwargs) -> BaseIndex: | ||
uuids = self._get_uuids(texts) | ||
self._vector_store = WeaviateVectorStore.from_documents( | ||
texts, | ||
self._embeddings, | ||
client=self._client, | ||
index_name=self.get_index_name(self.dataset), | ||
uuids=uuids, | ||
by_text=False | ||
) | ||
|
||
return self | ||
|
||
def _get_vector_store(self) -> VectorStore: | ||
"""Only for created index.""" | ||
if self._vector_store: | ||
return self._vector_store | ||
|
||
attributes = ['doc_id', 'dataset_id', 'document_id'] | ||
if self._is_origin(): | ||
attributes = ['doc_id'] | ||
|
||
return WeaviateVectorStore( | ||
client=self._client, | ||
index_name=self.get_index_name(self.dataset), | ||
text_key='text', | ||
embedding=self._embeddings, | ||
attributes=attributes, | ||
by_text=False | ||
) | ||
|
||
def _get_vector_store_class(self) -> type: | ||
return MilvusVectorStore | ||
|
||
def delete_by_document_id(self, document_id: str): | ||
if self._is_origin(): | ||
self.recreate_dataset(self.dataset) | ||
return | ||
|
||
vector_store = self._get_vector_store() | ||
vector_store = cast(self._get_vector_store_class(), vector_store) | ||
|
||
vector_store.del_texts({ | ||
"operator": "Equal", | ||
"path": ["document_id"], | ||
"valueText": document_id | ||
}) | ||
|
||
def _is_origin(self): | ||
if self.dataset.index_struct_dict: | ||
class_prefix: str = self.dataset.index_struct_dict['vector_store']['class_prefix'] | ||
if not class_prefix.endswith('_Node'): | ||
# original class_prefix | ||
return True | ||
|
||
return False |
Oops, something went wrong.