Skip to content

MariusDevon/EventSourcing.NetCore

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Twitter Follow Join the chat at https://gitter.im/EventSourcing-NetCore/community Build status blog

EventSourcing.NetCore

Tutorial, practical samples and other resources about Event Sourcing in .NET Core.

1. Event Sourcing

1.1 What is Event Sourcing?

Event Sourcing is a design pattern in which results of business operations are stored as a series of events.

It is an alternative way to persist data. In contrast with state-oriented persistence that only keeps the latest version of the entity state, Event Sourcing stores each state change as a separate event.

Thanks for that, no business data is lost. Each operation results in the event stored in the databse. That enables extended auditing and diagnostics capabilities (both technically and business-wise). What's more, as events contains the business context, it allows wide business analysis and reporting.

In this repository I'm showing different aspects, patterns around Event Sourcing. From the basic to advanced practices.

1.2 What is Event?

Events, represent facts in the past. They carry information about something accomplished. It should be named in the past tense, e.g. "user added", "order confirmed". Events are not directed to a specific recipient - they're broadcasted information. It's like telling a story at a party. We hope that someone listens to us, but we may quickly realise that no one is paying attention.

Events:

  • are immutable: "What has been seen, cannot be unseen".
  • can be ignored but cannot be retracted (as you cannot change the past).
  • can be interpreted differently. The basketball match result is a fact. Winning team fans will interpret it positively. Losing team fans - not so much.

Read more in my articles:

1.3 What is Stream?

Events are logically grouped into streams. In Event Sourcing, streams are the representation of the entities. All the entity state mutations ends up as the persisted events. Entity state is retrieved by reading all the stream events and applying them one by one in the order of appearance.

A stream should have a unique identifier representing the specific object. Each event has its own unique position within a stream. This position is usually represented by a numeric, incremental value. This number can be used to define the order of the events while retrieving the state. It can be also used to detect concurrency issues.

1.4 Event representation

Technically events are messages.

They may be represented, e.g. in JSON, Binary, XML format. Besides the data, they usually contain:

  • id: unique event identifier.
  • type: name of the event, e.g. "invoice issued".
  • stream id: object id for which event was registered (e.g. invoice id).
  • stream position (also named version, order of occurrence, etc.): the number used to decide the order of the event's occurrence for the specific object (stream).
  • timestamp: representing a time at which the event happened.
  • other metadata like correlation id, causation id, etc.

Sample event JSON can look like:

{
  "id": "e44f813c-1a2f-4747-aed5-086805c6450e",
  "type": "invoice-issued",
  "streamId": "INV/2021/11/01",
  "streamPosition": 1,
  "timestamp": "2021-11-01T00:05:32.000Z",

  "data":
  {
    "issuer": {
      "name": "Oscar the Grouch",
      "address": "123 Sesame Street",
    },
    "amount": 34.12,
    "number": "INV/2021/11/01",
    "issuedAt": "2021-11-01T00:05:32.000Z"
  },

  "metadata": 
  {
    "correlationId": "1fecc92e-3197-4191-b929-bd306e1110a4",
    "causationId": "c3cf07e8-9f2f-4c2d-a8e9-f8a612b4a7f1"
  }
}

1.5 Event Storage

Event Sourcing is not related to any type of storage implementation. As long as it fulfils the assumptions, it can be implemented having any backing database (relational, document, etc.). The state has to be represented by the append-only log of events. The events are stored in chronological order, and new events are appended to the previous event. Event Stores are the databases' category explicitly designed for such purpose.

Read more in my article:

2. Support

Feel free to create an issue if you have any questions or request for more explanation or samples. I also take Pull Requests!

πŸ’– If this repository helped you - I'd be more than happy if you join the group of my official supporters at:

πŸ‘‰ Github Sponsors

3. Prerequisites

For running the Event Store examples you need to have:

  1. .NET 5 installed - https://dotnet.microsoft.com/download/dotnet/5.0
  2. Postgres DB. You can get it by:
  • Installing Docker, going to the docker folder and running:
docker-compose up

More information about using .NET Core, WebApi and Docker you can find in my other tutorials: WebApi with .NET

Watch "Practical Event Sourcing with Marten":

Practical Event Sourcing with Marten (EN)

Slides:

  • Practical Event Sourcing with Marten - EN, PL
  • Ligths and Shades of Event-Driven Design - EN, PL
  • Adventures in Event Sourcing and CQRS - PL

4. Libraries used

  1. Marten - Event Store

  2. MediatR - Message Bus (for processing Commands, Queries, Events)

5. Articles

Read also more on the Event Sourcing and CQRS topics in my blog posts:

6. Event Store - Marten

  • Creating event store
  • Event Stream - is a representation of the entity in event sourcing. It's a set of events that happened for the entity with the exact id. Stream id should be unique, can have different types but usually is a Guid.
    • Stream starting - stream should be always started with a unique id. Marten provides three ways of starting the stream:
      • calling StartStream method with a stream id
        var streamId = Guid.NewGuid();
        documentSession.Events.StartStream<IssuesList>(streamId);
      • calling StartStream method with a set of events
        var @event = new IssueCreated { IssueId = Guid.NewGuid(), Description = "Description" };
        var streamId = documentSession.Events.StartStream<IssuesList>(@event);
      • just appending events with a stream id
        var @event = new IssueCreated { IssueId = Guid.NewGuid(), Description = "Description" };
        var streamId = Guid.NewGuid();
        documentSession.Events.Append(streamId, @event);
    • Stream loading - all events that were placed on the event store should be possible to load them back. Marten allows to:
      • get list of event by calling FetchStream method with a stream id
        var eventsList = documentSession.Events.FetchStream(streamId);
      • geting one event by its id
        var @event = documentSession.Events.Load<IssueCreated>(eventId);
    • Stream loading from exact state - all events that were placed on the event store should be possible to load them back. Marten allows to get stream from exact state by:
      • timestamp (has to be in UTC)
        var dateTime = new DateTime(2017, 1, 11);
        var events = documentSession.Events.FetchStream(streamId, timestamp: dateTime);
      • version number
        var versionNumber = 3;
        var events = documentSession.Events.FetchStream(streamId, version: versionNumber);
  • Event stream aggregation - events that were stored can be aggregated to form the entity once again. During the aggregation, process events are taken by the stream id and then replied event by event (so eg. NewTaskAdded, DescriptionOfTaskChanged, TaskRemoved). At first, an empty entity instance is being created (by calling default constructor). Then events based on the order of appearance (timestamp) are being applied on the entity instance by calling proper Apply methods.
    • Aggregation general rules
    • Online Aggregation - online aggregation is a process when entity instance is being constructed on the fly from events. Events are taken from the database and then aggregation is being done. The biggest advantage of online aggregation is that it always gets the most recent business logic. So after the change, it's automatically reflected and it's not needed to do any migration or updates.
    • Inline Aggregation (Snapshot) - inline aggregation happens when we take the snapshot of the entity from the DB. In that case, it's not needed to get all events. Marten stores the snapshot as a document. This is good for performance reasons because only one record is being materialized. The con of using inline aggregation is that after business logic has changed records need to be reaggregated.
    • Reaggregation - one of the biggest advantages of the event sourcing is flexibility to business logic updates. It's not needed to perform complex migration. For online aggregation it's not needed to perform reaggregation - it's being made always automatically. The inline aggregation needs to be reaggregated. It can be done by performing online aggregation on all stream events and storing the result as a snapshot.
      • reaggregation of inline snapshot with Marten
        var onlineAggregation = documentSession.Events.AggregateStream<TEntity>(streamId);
        documentSession.Store<TEntity>(onlineAggregation);
        documentSession.SaveChanges();
  • Event transformations
  • Events projection
  • Multitenancy per schema

7. Message Bus (for processing Commands, Queries, Events) - MediatR

  • Initialization - MediatR uses services locator pattern to find a proper handler for the message type.
  • Sending Messages - finds and uses the first registered handler for the message type. It could be used for queries (when we need to return values), commands (when we acting).
    • No Handlers - when MediatR doesn't find proper handler it throws an exception.
    • Single Handler - by implementing IRequestHandler we're deciding that this handler should be run asynchronously with other async handlers (so we don't wait for the previous handler to finish its work).
    • More Than One Handler - when there is more than one handler registered MediatR takes only one ignoring others when Send method is being called.
  • Publishing Messages - finds and uses all registered handlers for the message type. It's good for processing events.
    • No Handlers - when MediatR doesn't find proper handler it throws an exception
    • Single Handler - by implementing INotificationHandler we're deciding that this handler should be run asynchronously with other async handlers (so we don't wait for the previous handler to finish its work)
    • More Than One Handler - when there is more than one handler registered MediatR takes all of them when calling Publish method
  • Pipeline (to be defined)

8. CQRS (Command Query Responsibility Separation)

9. Fully working sample application

See also fully working sample application in Sample Project

  • See sample how Entity Framework and Marten can coexist together with CQRS and Event Sourcing

10. Self-paced training Kit

I prepared the self-paced training Kit for the Event Sourcing. See more in the Workshop description.

It's split into two parts:

Event Sourcing basics - it teaches the event store basics by showing how to build your Event Store on Relational Database. It starts with the tables setup, goes through appending events, aggregations, projections, snapshots, and finishes with the Marten basics. See more in here.

  1. Streams Table
  2. Events Table
  3. Appending Events
  4. Optimistic Concurrency Handling
  5. Event Store Methods
  6. Stream Aggregation
  7. Time Travelling
  8. Aggregate and Repositories
  9. Snapshots
  10. Projections
  11. Projections With Marten

Event Sourcing advanced topics - it's a real-world sample of the microservices written in Event-Driven design. It explains the topics of modularity, eventual consistency. Shows practical usage of WebApi, Marten as Event Store, Kafka as Event bus and ElasticSearch as one of the read stores. See more in here.

  1. Meetings Management Module - the module responsible for creating, updating meeting details. Written in Marten in Event Sourcing pattern. Provides both write model (with Event Sourced aggregates) and read model with projections.
  2. Meetings Search Module - responsible for searching and advanced filtering. Uses ElasticSearch as storage (because of its advanced searching capabilities). It's a read module that's listening for the events published by the Meetings Management Module.

11. NuGet packages to help you get started.

I gathered and generalized all of the practices used in this tutorial/samples in Nuget Packages maintained by me GoldenEye Framework. See more in:

  • GoldenEye DDD package - it provides a set of base and bootstrap classes that helps you to reduce boilerplate code and help you focus on writing business code. You can find all classes like Commands/Queries/Event handlers and many more. To use it run:

    dotnet add package GoldenEye.Backend.Core.DDD

  • GoldenEye Marten package - contains helpers, and abstractions to use Marten as document/event store. Gives you abstractions like repositories etc. To use it run:

    dotnet add package GoldenEye.Backend.Core.Marten

The simplest way to start is installing the project template by running

dotnet new -i GoldenEye.WebApi.Template.SimpleDDD

and then creating a new project based on it:

dotnet new SimpleDDD -n NameOfYourProject

12. Other resources

12.1 Introduction

12.2 Event Sourcing on production

12.3 Projections

12.4 Snapshots

12.5 Versioning

12.6 Storage

12.7 Design & Modeling

12.8 GDPR

12.9 Conflict Detection

12.10 Functional programming

12.12 Testing

12.13 CQRS

12.14 Tools

12.15 Event Sourcing vs Messaging

12.15 Event processing

12.16 Distributed processes

12.17 Domain Driven Design

12.18 Architecture Weekly

If you're interested in Architecture resources, check my other repository: https://github.com/oskardudycz/ArchitectureWeekly/.

It contains a weekly updated list of materials I found valuable and educational.


EventSourcing.NetCore is Copyright Β© 2017-2021 Oskar Dudycz and other contributors under the MIT license.

About

Examples and Tutorials of Event Sourcing in .NET

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C# 99.7%
  • Dockerfile 0.3%