A Bayesian Python code to fit the axion-photon parameter space to cosmological data.
Written by Manuel A. Buen-Abad and Chen Sun, 2020
- Python
- numpy
- scipy
- emcee
- corner
In the terminal:
$ python cosmo_axions_run.py -L likelihoods/ -o path/to/your/chain/output/ -i inputs/the_param_file.param -N number_of_points -w number_of_walkers
After the runs are finished, you can analyze them with:
$ python cosmo_axions_analysis.py -i path/to/your/chain/output/
Once the analysis is done, if you wanna output the contours in ma-ga space from the frequentist likelihood ratio test, do:
$ python bin_chi2.py -c path/to/your/chain/output/ -b number_of_ma-ga_bins
where the argument with flag -b bins the ma-ga parameter space in order to minimize the chi2 in each bin. A value of ~50 is good enough.
If you use this code or find it in any way useful for your research, please cite Buen-Abad, Fan, & Sun (2020). The Bibtex entry is:
@article{Buen-Abad:2020zbd,
author = "Buen-Abad, Manuel A. and Fan, JiJi and Sun, Chen",
title = "{Constraints on Axions from Cosmic Distance Measurements}",
eprint = "2011.05993",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
month = "11",
year = "2020"
}