Skip to content

Commit

Permalink
Initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
PaulVanSchayck committed Feb 5, 2020
0 parents commit 9538651
Show file tree
Hide file tree
Showing 27 changed files with 2,132 additions and 0 deletions.
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2020 Maastricht University

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
6 changes: 6 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
## H5 file format description

* `/pixels`
* `/trajectories/0-n`
* `/predictions/*`
* `/incidents`
229 changes: 229 additions & 0 deletions browser.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,229 @@
import sys
import h5py
import tkinter as Tk
from matplotlib.backends.backend_tkagg import (
FigureCanvasTkAgg, NavigationToolbar2Tk
)
import matplotlib.pyplot as plt
# from keras.models import load_model

from trajectories import plot_3dtrajectory
from pixels import plot_pixels


# from deeplearning import VisualiseConvLayer

def _quit():
root.quit()
root.destroy()


def go():
global slider, index_val

slider.set(int(index_val.get()))


def set_plot(i):
global idx, slider, index_val

index_val.set(i)
idx = int(i)
show_plots(idx)


def prev_plot():
global idx, slider

idx = idx - 1
slider.set(idx)


def next_plot():
global idx, slider

idx = idx + 1
slider.set(idx)


def get_pixel(i):
global pixels

if pixels is None:
return None

return pixels[i]


def get_incident(i):
global incidents

if incidents is None:
return None

return incidents[i]


def get_edges(i):
global edges

if edges is None:
return None

return edges[i]


def get_trajectory(i):
global trajectories

if trajectories is None:
return None

return trajectories[str(i)][()]


def get_prediction(i):
global predictions

if predictions is None:
return None

pred = dict()
for label in predictions:
pred[label] = predictions[label][i]

return pred


# def get_actv(model, i, pixel):
# weights = VisualiseConvLayer.getWeightsLayer(model, 0)
# actvs = VisualiseConvLayer.get_activations(model, pixel.reshape(1, 2, 10, 10), layer_name='separable_conv2d_1')
#
# return weights, actvs

def show_plots(i):
global canvas, canvas_pix, sensor_height

pixel = get_pixel(i)
trajectory = get_trajectory(i)
prediction = get_prediction(i)
incident = get_incident(i)
# weights, actvs = get_actv(i, pixel)
edges = get_edges(i)

if trajectory is not None:
traj_fig.clear()
plot_3dtrajectory.plot(traj_fig, trajectory, sensor_height)
canvas.draw()

if pixel is not None:
# Get pixels
pix_fig.clear()
plot_pixels.plot(pix_fig, pixel, incident, prediction, edges)
canvas_pix.draw()

# if actvs is not None:
# # Get pixels
# traj_fig.clear()
# VisualiseConvLayer.display_activations(actvs, weights, traj_fig)
# canvas.draw()


# File
filename = sys.argv[1]
f = h5py.File(filename, 'r')

pixels, predictions, trajectories, incidents, edges = None, None, None, None, None
if 'clusters' in f:
pixels = f['clusters'][()]
if 'trajectories' in f:
trajectories = f['trajectories']
if 'predictions' in f:
predictions = f['predictions']
if 'incidents' in f:
incidents = f['incidents'][()]
if 'edges' in f:
edges = f['edges'][()]

sensor_height = f.attrs['sensor_height'] if 'sensor_height' in f.attrs else 300000

# Setup Tk
root = Tk.Tk()
root.wm_title("Trajectory Browser")
graphs = Tk.Frame(root)

# Setup info screen

info = Tk.Frame(graphs)
info.grid(row=0, column=0, sticky='N')
Tk.Label(master=info, text="Information:", height=2).pack(side=Tk.TOP)

attrs = f.attrs
Tk.Label(master=info, text="Sensor height: %s" % attrs.get('sensor_height', 'N/A'), anchor='w').pack(side=Tk.TOP)
Tk.Label(master=info, text="Sensor material: %s" % attrs.get('sensor_material', 'N/A'), anchor='w').pack(side=Tk.TOP,
fill='both')
Tk.Label(master=info, text="Beam energy: %s" % attrs.get('beam_energy', 'N/A'), anchor='w').pack(side=Tk.TOP,
fill='both')
Tk.Label(master=info, text="Source: %s" % attrs.get('data_source', 'N/A'), anchor='w').pack(side=Tk.TOP, fill='both')

# Setup graphs

# actv_fig = plt.figure()
# canvas_actv = FigureCanvasTkAgg(actv_fig, master=graphs)
# canvas_actv.draw()
# toolbar_frame_actv = Tk.Frame(graphs)
# toolbar = NavigationToolbar2Tk(canvas_actv, toolbar_frame_actv)
# toolbar.update()
# canvas_actv.get_tk_widget().grid(row=0, column=3)
# toolbar_frame_actv.grid(row=1, column=3, sticky=Tk.W)

traj_fig = plt.figure()
canvas = FigureCanvasTkAgg(traj_fig, master=graphs)
canvas.draw()
toolbar_frame_traj = Tk.Frame(graphs)
toolbar = NavigationToolbar2Tk(canvas, toolbar_frame_traj)
toolbar.update()
canvas.get_tk_widget().grid(row=0, column=2)
toolbar_frame_traj.grid(row=1, column=2, sticky=Tk.W)

pix_fig = plt.figure()
canvas_pix = FigureCanvasTkAgg(pix_fig, master=graphs)
canvas_pix.draw()
toolbar_frame_pix = Tk.Frame(graphs)
toolbar = NavigationToolbar2Tk(canvas_pix, toolbar_frame_pix)
toolbar.update()
canvas_pix.get_tk_widget().grid(row=0, column=1)
toolbar_frame_pix.grid(row=1, column=1, sticky=Tk.W)

# Controls
controls = Tk.Frame(root)

index_val = Tk.StringVar()
index = Tk.Entry(master=controls, textvariable=index_val).grid(row=0, column=2, sticky='S')
go = Tk.Button(master=controls, text='Go', command=go).grid(row=0, column=3, sticky='S')
next = Tk.Button(master=controls, text='Prev', command=prev_plot).grid(row=1, column=1, sticky='S')
slider = Tk.Scale(
master=controls,
from_=0, to=f['clusters'].shape[0],
orient=Tk.HORIZONTAL, length=400,
command=set_plot,
showvalue=0
)
slider.grid(row=1, column=2)
prev = Tk.Button(master=controls, text='Next', command=next_plot).grid(row=1, column=3, sticky='S')

# Tk final setup
root.protocol("WM_DELETE_WINDOW", _quit)

graphs.pack(side=Tk.TOP)
controls.pack(side=Tk.BOTTOM)

if 2 in sys.argv and int(sys.argv[2]) > 0:
idx = int(sys.argv[2])
else:
idx = 0

set_plot(idx)
slider.set(idx)

Tk.mainloop()
130 changes: 130 additions & 0 deletions deeplearning/testing.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
import argparse
import os
import sys

import h5py
import numpy as np
from keras.models import load_model

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
from lib.constants import *


def parse_arguments():
parser = argparse.ArgumentParser(
description=__doc__, # printed with -h/--help
formatter_class=argparse.RawDescriptionHelpFormatter,
)

parser.add_argument('FILE', help="Input .h5 dataset")
parser.add_argument("--model", metavar='FILE', help="Path to model")
parser.add_argument("--tot", default=False, action='store_true', help="Predict on only ToT")
parser.add_argument("--toa", default=False, action='store_true', help="Predict on only ToA")
parser.add_argument("--name", default='CNN', help="Name of prediction to use")
parser.add_argument("--experimental", default=False, action='store_true',
help='set to true to use experimental data')

settings = parser.parse_args()

return settings


def predict(predictpath, model_path, tot, toa, predic):
f = h5py.File(predictpath, "a")
pixels = f['clusters'][()]
n = len(pixels)

if tot:
shape = 1
elif toa:
shape = 1
else:
shape = 2

x_test, y_test = np.zeros((n, shape, n_pixels, n_pixels)), np.zeros((n, 2))

for i in range(0, n):
if not toa and not tot:
x_test[i, 0] = pixels[i, 0][0:n_pixels, 0:n_pixels]
x_test[i, 1] = np.nan_to_num(pixels[i, 1])[0:n_pixels, 0:n_pixels]
elif toa:
x_test[i, 0] = np.nan_to_num(pixels[i, 1])[0:n_pixels, 0:n_pixels]
elif tot:
x_test[i, 0] = pixels[i, 0][0:n_pixels, 0:n_pixels]

model = load_model(model_path)

# keras.utils.plot_model(model, to_file='test.ps', show_shapes=True, rankdir='TB')
# exit(0)

pred = model.predict(x_test, batch_size=n, verbose=1)

if not f.__contains__("predictions"):
predictions = f.create_group("predictions")
else:
predictions = f["predictions"]

pred = pred * 55000

if predictions.__contains__(predic):
del predictions[predic]

predictions.create_dataset(predic, data=pred)


def predict3(predictpath, model_path, tot, toa, predic):
f = h5py.File(predictpath, "a")
pixels = f['clusters'][()]
edges = f['edges'][()]
n = len(pixels)

if tot:
shape = 1
elif toa:
shape = 1
else:
shape = 2

x_test, y_test = np.zeros((n, shape, n_pixels, n_pixels)), np.zeros((n, 2))

for i in range(0, n):
if not toa and not tot:
x_test[i, 0] = pixels[i, 0][0:n_pixels, 0:n_pixels]
x_test[i, 1] = np.nan_to_num(pixels[i, 1])[0:n_pixels, 0:n_pixels]
elif toa:
x_test[i, 0] = np.nan_to_num(pixels[i, 1])[0:n_pixels, 0:n_pixels]
elif tot:
x_test[i, 0] = pixels[i, 0][0:n_pixels, 0:n_pixels]

model = load_model(model_path, custom_objects={"loss_truth_mask": loss_truth_mask})

pred = model.predict(x_test, batch_size=1000, verbose=1)

if not f.__contains__("predictions"):
predictions = f.create_group("predictions")

else:
predictions = f["predictions"]

pred = pred * 55000

if predictions.__contains__(predic):
del predictions[predic]

predictions.create_dataset(predic, data=pred)


def main():
config = parse_arguments()

if config.experimental:
predict3(config.FILE, config.model, config.tot, config.toa, config.name)
else:
predict(config.FILE, config.model, config.tot, config.toa, config.name)


if __name__ == "__main__":
try:
sys.exit(main())
except KeyboardInterrupt:
sys.exit(0)
Loading

0 comments on commit 9538651

Please sign in to comment.