Skip to content

LincolnVS/explainable-drl-traffic-lights

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Traffic Light Control Baselines

Install

Requirements

Before you begin, ensure you have met the following requirements:

  • numpy==1.20.2
  • keras==v2.3.1
  • python==3.7.10
  • tensorflow==1.14.0
  • pandas==1.2.3
  • scipy==1.6.2
  • seaborn==0.11.1
  • CityFlow

Newer versions of the above items may not be fully compatible with our code.

Conda Env

To make reproducibility easier, using a conda environment it is possible to load all dependencies.

To create an environment from an environment file:

$conda env create -f conda_environment.yaml

Usage

Just run any of the run_*.py scripts and pass the path of config file.

Example:

python run_dqn.py ./envs/jinan_3_4/config.json

How to cite this research

For citing this work, please use the following entries:

@InProceedings{Schreiber+2022ijcnn,
	author = {Schreiber, Lincoln and Alegre, Lucas N. and Bazzan, Ana L. C. and Ramos, Gabriel {\relax de} O.},
	title = {On the Explainability and Expressiveness of Function Approximation Methods in RL-Based Traffic Signal Control},
	booktitle = {2022 International Joint Conference on Neural Networks (IJCNN)},
	OPTpages = {},
	year = {2022},
	address = {Padova, Italy},
	month = {July},
	publisher = {IEEE},
	OPTdoi = {},
	OPTurl = {https://doi.org/},
	note = {Forthcoming}
}

Publications

  1. L. Schreiber, L. N. Alegre, A. L. C. Bazzan, and G. O. Ramos, “On the Explainability and Expressiveness of Function Approximation Methods in RL-Based Traffic Signal Control,” in 2022 International Joint Conference on Neural Networks (IJCNN), Padova, Italy, 2022. [LINK IN PROGRESS]

  2. Schreiber, L. V., Ramos, G. de O. & Bazzan, A. L. C. (2021). Towards Explainable Deep Reinforcement Learning for Traffic Signal Control [Oral Presentation]. International Conference on Machine Learning Conference: LatinX in AI (LXAI) Research Workshop 2021, Virtual. LINK

  3. Alegre, L. N., Ziemke, T. & Bazzan, A. L. C. (2021). Using reinforcement learning to control traffic signals in a real-world scenario: an approach based on linear function approximation. IEEE Transactions on Intelligent Transportation Systems. LINK

License

This project uses the following license: MIT.

Created from a repo that provides a OpenAI Gym compatible environments for traffic light control scenario - tlc-baselines

Releases

No releases published

Packages

No packages published