Skip to content

Commit

Permalink
ft
Browse files Browse the repository at this point in the history
  • Loading branch information
awaelchli committed Apr 19, 2024
1 parent b7defe4 commit f203eb3
Show file tree
Hide file tree
Showing 4 changed files with 343 additions and 0 deletions.
4 changes: 4 additions & 0 deletions config_hub/finetune/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,10 @@ For more information, see the [Dealing with out-of-memory (OOM) errors](../../tu
| llama-2-7b/qlora.yaml | 7B | Alpaca 2k | 4 | 0.814 | 13.68 GB | 512 | 2 | bfloat16 | 45.68 min (A10G) |
| llama-2-7b/full.yaml | 7B | Alpaca 2k | 1 | 0.941 | 26.81 GB | 512 | 4 | bfloat16 | 1.78 min (4xA100) |
| | | | | | | | | | |
| llama-3-8b/lora.yaml | 8B | Alpaca 2k | 4 | ----- | -------- | 512 | 2 | bfloat16 | ---------------- |
| llama-3-8b/qlora.yaml | 8B | Alpaca 2k | 4 | ----- | -------- | 512 | 2 | bfloat16 | ---------------- |
| llama-3-8b/full.yaml | 8B | Alpaca 2k | 1 | ----- | -------- | 512 | 4 | bfloat16 | ---------------- |
| | | | | | | | | | |
| mistral-7b/lora.yaml (v0.1) | 7B | Alpaca 2k | 4 | 0.796 | 20.65 GB | 512 | 2 | bfloat16 | 31.04 min (1xA10G) |
| mistral-7b/qlora.yaml (v0.1) | 7B | Alpaca 2k | 4 | 0.803 | 14.29 GB | 512 | 2 | bfloat16 | 44.69 min (1xA10G) |
| | | | | | | | | | |
Expand Down
95 changes: 95 additions & 0 deletions config_hub/finetune/llama-3-8b/full.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@

# The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
checkpoint_dir: checkpoints/meta-llama/Meta-Llama-3-8B

# Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/finetune/full)
out_dir: out/finetune/full-llama-3-8b

# The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
precision: bf16-true

# How many devices/GPUs to use (type: Union[int, str], default: 1)
devices: 4

# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
# from the latest checkpoint in ``out_dir``. (type: Union[bool, Path], default: False)
resume: false

# Data-related arguments. If not provided, the default is ``litgpt.data.Alpaca``.
data:
class_path: litgpt.data.Alpaca2k
init_args:
mask_prompt: false
prompt_style: alpaca
ignore_index: -100
seed: 42
num_workers: 4

# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
train:

# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
save_interval: 200

# Number of iterations between logging calls (type: int, default: 1)
log_interval: 1

# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 64)
global_batch_size: 64

# Number of samples per data-parallel rank (type: int, default: 1)
micro_batch_size: 4

# Number of iterations with learning rate warmup active (type: int, default: 100)
lr_warmup_steps: 25

# Number of epochs to train on (type: Optional[int], default: 5)
epochs: 1

# Total number of tokens to train on (type: Optional[int], default: null)
max_tokens:

# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
max_steps:

# Limits the length of samples. Off by default (type: Optional[int], default: null)
max_seq_length: 512

# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: null)
tie_embeddings:

# (type: float, default: 0.003)
learning_rate: 0.0002

# (type: float, default: 0.02)
weight_decay: 0.1

# (type: float, default: 0.9)
beta1: 0.9

# (type: float, default: 0.95)
beta2: 0.95

# (type: Optional[float], default: null)
max_norm:

# (type: float, default: 6e-05)
min_lr: 6.0e-05

# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
eval:

# Number of optimizer steps between evaluation calls (type: int, default: 600)
interval: 25

# Number of tokens to generate (type: Optional[int], default: 100)
max_new_tokens: 100

# Number of iterations (type: int, default: 100)
max_iters: 100

# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: csv)
logger_name: csv

# The random seed to use for reproducibility. (type: int, default: 1337)
seed: 1337
121 changes: 121 additions & 0 deletions config_hub/finetune/llama-3-8b/lora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@

# The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
checkpoint_dir: checkpoints/meta-llama/Meta-Llama-3-8B

# Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
out_dir: out/finetune/lora-llama-3-8b

# The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
precision: bf16-true

# If set, quantize the model with this algorithm. See ``tutorials/quantize.md`` for more information. (type: Optional[Literal['nf4', 'nf4-dq', 'fp4', 'fp4-dq', 'int8-training']], default: null)
quantize:

# How many devices/GPUs to use. (type: Union[int, str], default: 1)
devices: 1

# The LoRA rank. (type: int, default: 8)
lora_r: 32

# The LoRA alpha. (type: int, default: 16)
lora_alpha: 16

# The LoRA dropout value. (type: float, default: 0.05)
lora_dropout: 0.05

# Whether to apply LoRA to the query weights in attention. (type: bool, default: True)
lora_query: true

# Whether to apply LoRA to the key weights in attention. (type: bool, default: False)
lora_key: false

# Whether to apply LoRA to the value weights in attention. (type: bool, default: True)
lora_value: true

# Whether to apply LoRA to the output projection in the attention block. (type: bool, default: False)
lora_projection: false

# Whether to apply LoRA to the weights of the MLP in the attention block. (type: bool, default: False)
lora_mlp: false

# Whether to apply LoRA to output head in GPT. (type: bool, default: False)
lora_head: false

# Data-related arguments. If not provided, the default is ``litgpt.data.Alpaca``.
data:
class_path: litgpt.data.Alpaca2k
init_args:
mask_prompt: false
prompt_style: alpaca
ignore_index: -100
seed: 42
num_workers: 4

# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
train:

# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
save_interval: 200

# Number of iterations between logging calls (type: int, default: 1)
log_interval: 1

# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 128)
global_batch_size: 8

# Number of samples per data-parallel rank (type: int, default: 4)
micro_batch_size: 2

# Number of iterations with learning rate warmup active (type: int, default: 100)
lr_warmup_steps: 10

# Number of epochs to train on (type: Optional[int], default: 5)
epochs: 4

# Total number of tokens to train on (type: Optional[int], default: null)
max_tokens:

# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
max_steps:

# Limits the length of samples. Off by default (type: Optional[int], default: null)
max_seq_length: 512

# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: null)
tie_embeddings:

# (type: float, default: 0.0003)
learning_rate: 0.0002

# (type: float, default: 0.02)
weight_decay: 0.0

# (type: float, default: 0.9)
beta1: 0.9

# (type: float, default: 0.95)
beta2: 0.95

# (type: Optional[float], default: null)
max_norm:

# (type: float, default: 6e-05)
min_lr: 6.0e-05

# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
eval:

# Number of optimizer steps between evaluation calls (type: int, default: 100)
interval: 100

# Number of tokens to generate (type: Optional[int], default: 100)
max_new_tokens: 100

# Number of iterations (type: int, default: 100)
max_iters: 100

# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: csv)
logger_name: csv

# The random seed to use for reproducibility. (type: int, default: 1337)
seed: 1337
123 changes: 123 additions & 0 deletions config_hub/finetune/llama-3-8b/qlora.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@

# The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
checkpoint_dir: checkpoints/meta-llama/Meta-Llama-3-8B

# Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
out_dir: out/finetune/qlora-llama3-8b

# The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
precision: bf16-true

# If set, quantize the model with this algorithm. See ``tutorials/quantize.md`` for more information. (type: Optional[Literal['nf4', 'nf4-dq', 'fp4', 'fp4-dq', 'int8-training']], default: null)
quantize: bnb.nf4

# How many devices/GPUs to use. (type: Union[int, str], default: 1)
devices: 1

# The LoRA rank. (type: int, default: 8)
lora_r: 32

# The LoRA alpha. (type: int, default: 16)
lora_alpha: 16

# The LoRA dropout value. (type: float, default: 0.05)
lora_dropout: 0.05

# Whether to apply LoRA to the query weights in attention. (type: bool, default: True)
lora_query: true

# Whether to apply LoRA to the key weights in attention. (type: bool, default: False)
lora_key: false

# Whether to apply LoRA to the value weights in attention. (type: bool, default: True)
lora_value: true

# Whether to apply LoRA to the output projection in the attention block. (type: bool, default: False)
lora_projection: false

# Whether to apply LoRA to the weights of the MLP in the attention block. (type: bool, default: False)
lora_mlp: false

# Whether to apply LoRA to output head in GPT. (type: bool, default: False)
lora_head: false

# Data-related arguments. If not provided, the default is ``litgpt.data.Alpaca``.
data:
class_path: litgpt.data.Alpaca2k
init_args:
mask_prompt: false
val_split_fraction: 0.05
prompt_style: alpaca
ignore_index: -100
seed: 42
num_workers: 4
download_dir: data/alpaca2k

# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
train:

# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
save_interval: 200

# Number of iterations between logging calls (type: int, default: 1)
log_interval: 1

# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 128)
global_batch_size: 8

# Number of samples per data-parallel rank (type: int, default: 4)
micro_batch_size: 2

# Number of iterations with learning rate warmup active (type: int, default: 100)
lr_warmup_steps: 10

# Number of epochs to train on (type: Optional[int], default: 5)
epochs: 4

# Total number of tokens to train on (type: Optional[int], default: null)
max_tokens:

# Limits the number of optimizer steps to run (type: Optional[int], default: null)
max_steps:

# Limits the length of samples (type: Optional[int], default: null)
max_seq_length: 512

# Whether to tie the embedding weights with the language modeling head weights (type: Optional[bool], default: null)
tie_embeddings:

# (type: float, default: 0.0003)
learning_rate: 0.0002

# (type: float, default: 0.02)
weight_decay: 0.0

# (type: float, default: 0.9)
beta1: 0.9

# (type: float, default: 0.95)
beta2: 0.95

# (type: Optional[float], default: null)
max_norm:

# (type: float, default: 6e-05)
min_lr: 6.0e-05

# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
eval:

# Number of optimizer steps between evaluation calls (type: int, default: 100)
interval: 100

# Number of tokens to generate (type: Optional[int], default: 100)
max_new_tokens: 100

# Number of iterations (type: int, default: 100)
max_iters: 100

# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: csv)
logger_name: csv

# The random seed to use for reproducibility. (type: int, default: 1337)
seed: 1337

0 comments on commit f203eb3

Please sign in to comment.