forked from GAP-LAB-CUHK-SZ/RfDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 045522e
Showing
69 changed files
with
12,720 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,129 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
|
||
# C extensions | ||
*.so | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
pip-wheel-metadata/ | ||
share/python-wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
MANIFEST | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.nox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
*.py,cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
db.sqlite3 | ||
db.sqlite3-journal | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# IPython | ||
profile_default/ | ||
ipython_config.py | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# pipenv | ||
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. | ||
# However, in case of collaboration, if having platform-specific dependencies or dependencies | ||
# having no cross-platform support, pipenv may install dependencies that don't work, or not | ||
# install all needed dependencies. | ||
#Pipfile.lock | ||
|
||
# PEP 582; used by e.g. github.com/David-OConnor/pyflow | ||
__pypackages__/ | ||
|
||
# Celery stuff | ||
celerybeat-schedule | ||
celerybeat.pid | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
env.bak/ | ||
venv.bak/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
.dmypy.json | ||
dmypy.json | ||
|
||
# Pyre type checker | ||
.pyre/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2021 Ze Liu | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# Group-Free 3D Object Detection via Transformers | ||
|
||
By [Ze Liu](https://github.com/zeliu98), [Zheng Zhang](https://github.com/stupidZZ) | ||
, [Yue Cao](https://github.com/caoyue10), [Han Hu](https://github.com/ancientmooner), [Xin Tong](http://www.xtong.info/) | ||
|
||
![teaser](doc/teaser.png) | ||
|
||
**Updates** | ||
|
||
- April 01, 2021: initial release. | ||
|
||
## Introduction | ||
|
||
This repo is the official implementation | ||
of ["Group-Free 3D Object Detection via Transformers"](https://arxiv.org/abs/2104.). | ||
|
||
Recently, directly detecting 3D objects from 3D point clouds has received increasing attention. To extract object | ||
representation from an irregular point cloud, existing methods usually take a point grouping step to assign the points | ||
to an object candidate so that a PointNet-like network could be used to derive object features from the grouped points. | ||
However, the inaccurate point assignments caused by the hand-crafted grouping scheme decrease the performance of 3D | ||
object detection. In this paper, we present a simple yet effective method for directly detecting 3D objects from the 3D | ||
point cloud. Instead of grouping local points to each object candidate, our method computes the feature of an object | ||
from all the points in the point cloud with the help of an attention mechanism in the Transformers, where the | ||
contribution of each point is automatically learned in the network training. With an improved attention stacking scheme, | ||
our method fuses object features in different stages and generates more accurate object detection results. With few | ||
bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used | ||
benchmarks, ScanNet V2 and SUN RGB-D. | ||
|
||
In this repository, we provide model implementation (with Pytorch) as well as data preparation, training and evaluation | ||
scripts on ScanNet and SUN RGB-D. | ||
|
||
## Citation | ||
|
||
``` | ||
@article{liu2021, | ||
title={Group-Free 3D Object Detection via Transformers}, | ||
author={Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong, Xin}, | ||
journal={arXiv preprint arXiv:2104.}, | ||
year={2021} | ||
} | ||
``` | ||
|
||
## Main Results | ||
|
||
### Scannet V2 | ||
|
||
|Method | backbone | [email protected] | [email protected] | Model | | ||
|:---:|:---:|:---:|:---:|:---:| | ||
|[HGNet](https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_A_Hierarchical_Graph_Network_for_3D_Object_Detection_on_Point_CVPR_2020_paper.pdf)| GU-net| 61.3 | 34.4 | - | | ||
|[GSDN](https://arxiv.org/pdf/2006.12356.pdf)| MinkNet | 62.8 | 34.8 | [waiting for release](https://github.com/jgwak/GSDN) | | ||
|[3D-MPA](https://arxiv.org/abs/2003.13867)| MinkNet | 64.2 | 49.2 | [waiting for release](https://github.com/francisengelmann/3D-MPA) | | ||
|[VoteNet](https://arxiv.org/abs/1904.09664) | PointNet++ | 62.9 | 39.9 | [official repo](https://github.com/facebookresearch/votenet) | | ||
|[MLCVNet](https://arxiv.org/abs/2004.05679) | PointNet++ | 64.5 | 41.4 | [official repo](https://github.com/NUAAXQ/MLCVNet) | | ||
|[H3DNet](https://arxiv.org/abs/2006.05682) | PointNet++ | 64.4 | 43.4 | [official repo](https://github.com/zaiweizhang/H3DNet) | | ||
|[H3DNet](https://arxiv.org/abs/2006.05682) | 4xPointNet++ | 67.2| 48.1 | [official repo](https://github.com/zaiweizhang/H3DNet) | | ||
| Ours(L6, O256) | PointNet++ | 67.3 (66.2*) | 48.9 (48.4*) |[model](https://drive.google.com/file/d/1aS3vsHtg1QU0yFGPa_-kdBmfGR7VTvY0/view?usp=sharing)| | ||
| Ours(L12, O256) | PointNet++ | 67.2 (66.6*) | 49.7 (49.3*) |[model](https://drive.google.com/file/d/1IMaSW3GbXSKdDRnO_r60AiJaDEKkqAv8/view?usp=sharing)| | ||
| Ours(L12, O256) | PointNet++w2× |68.8 (68.3*) | 52.1 (51.1*) |[model](https://drive.google.com/file/d/1V6sFLFcqsp7YJ3-9AV2NqUhEGVkuNGWT/view?usp=sharing)| | ||
| Ours(L12, O512) | PointNet++w2× | 69.1 (68.8*) |52.8 (52.3*) |[model](https://drive.google.com/file/d/16NAEZqxPdBkxW7GGKGHe4-nDtfqL1htE/view?usp=sharing)| | ||
|
||
### SUNRGBD | ||
|
||
|Method | backbone | inputs | [email protected] | [email protected] | Model | | ||
|:---:|:---:|:---:|:---:|:---:|:---:| | ||
|[VoteNet](https://arxiv.org/abs/1904.09664)| PointNet++ |point | 59.1 | 35.8 |[official repo](https://github.com/facebookresearch/votenet)| | ||
|[MLCVNet](https://arxiv.org/abs/2004.05679)|PointNet++ | point | 59.8 | - | [official repo](https://github.com/NUAAXQ/MLCVNet) | | ||
|[HGNet](https://openaccess.thecvf.com/content_CVPR_2020/papers/Chen_A_Hierarchical_Graph_Network_for_3D_Object_Detection_on_Point_CVPR_2020_paper.pdf)| GU-net |point | 61.6 |-|-| | ||
|[H3DNet](https://arxiv.org/abs/2006.05682) | 4xPointNet++ |point | 60.1 | 39.0 | [official repo](https://github.com/zaiweizhang/H3DNet) | | ||
|[imVoteNet](https://arxiv.org/abs/2001.10692)|PointNet++|point+RGB| 63.4 | - | [official repo](https://github.com/facebookresearch/imvotenet)| | ||
| Ours(L6, O256)| PointNet++ | point | 62.8 (62.6*) | 42.3 (42.0*) |[model](https://drive.google.com/file/d/1uVQS3jtPQ6osZXPpydEcsoTt51TPqhMs/view?usp=sharing) | | ||
|
||
**Notes:** | ||
|
||
- `*` means the result is averaged over 5-times evaluation since the algorithm randomness is large. | ||
|
||
## Install | ||
|
||
### Requirements | ||
|
||
- `Ubuntu 16.04` | ||
- `Anaconda` with `python=3.6` | ||
- `pytorch>=1.3` | ||
- `torchvision` with `pillow<7` | ||
- `cuda=10.1` | ||
- `trimesh>=2.35.39,<2.35.40` | ||
- `'networkx>=2.2,<2.3'` | ||
- compile the CUDA layers for [PointNet++](http://arxiv.org/abs/1706.02413), which we used in the backbone | ||
network: `sh init.sh` | ||
- others: `pip install termcolor opencv-python tensorboard` | ||
|
||
### Data preparation | ||
|
||
For SUN RGB-D, follow the [README](./sunrgbd/README.md) under the `sunrgbd` folder. | ||
|
||
For ScanNet, follow the [README](./scannet/README.md) under the `scannet` folder. | ||
|
||
## Usage | ||
|
||
### Scannet | ||
|
||
For `L6, O256` training: | ||
|
||
```bash | ||
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \ | ||
train_dist.py --num_point 50000 --num_decoder_layers 6 \ | ||
--size_delta 0.111111111111 --center_delta 0.04 \ | ||
--learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \ | ||
--dataset scannet --data_root <data directory> [--log_dir <log directory>] | ||
``` | ||
|
||
For `L6, O256` evaluation: | ||
|
||
```bash | ||
python eval_avg.py --num_point 50000 --num_decoder_layers 6 \ | ||
--checkpoint_path <checkpoint> --avg_times 5 \ | ||
--dataset scannet --data_root <data directory> [--dump_dir <dump directory>] | ||
``` | ||
|
||
For `L12, O256` training: | ||
|
||
```bash | ||
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \ | ||
train_dist.py --num_point 50000 --num_decoder_layers 12 \ | ||
--size_delta 0.111111111111 --center_delta 0.04 \ | ||
--learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \ | ||
--dataset scannet --data_root <data directory> [--log_dir <log directory>] | ||
``` | ||
|
||
For `L6, O256` evaluation: | ||
|
||
```bash | ||
python eval_avg.py --num_point 50000 --num_decoder_layers 12 \ | ||
--checkpoint_path <checkpoint> --avg_times 5 \ | ||
--dataset scannet --data_root <data directory> [--dump_dir <dump directory>] | ||
``` | ||
|
||
For `w2x, L12, O256` training: | ||
|
||
```bash | ||
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \ | ||
train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 \ | ||
--size_delta 0.111111111111 --center_delta 0.04 \ | ||
--learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \ | ||
--dataset scannet --data_root <data directory> [--log_dir <log directory>] | ||
``` | ||
|
||
For `w2x, L12, O256` evaluation: | ||
|
||
```bash | ||
python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 \ | ||
--checkpoint_path <checkpoint> --avg_times 5 \ | ||
--dataset scannet --data_root <data directory> [--dump_dir <dump directory>] | ||
``` | ||
|
||
For `w2x, L12, O512` training: | ||
|
||
```bash | ||
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \ | ||
train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \ | ||
--size_delta 0.111111111111 --center_delta 0.04 \ | ||
--learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \ | ||
--dataset scannet --data_root <data directory> [--log_dir <log directory>] | ||
``` | ||
|
||
For `w2x, L12, O512` evaluation: | ||
|
||
```bash | ||
python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \ | ||
--checkpoint_path <checkpoint> --avg_times 5 \ | ||
--dataset scannet --data_root <data directory> [--dump_dir <dump directory>] | ||
``` | ||
|
||
#### SUNRGBD | ||
|
||
For `L6, O256` training: | ||
|
||
```bash | ||
python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \ | ||
train_dist.py --max_epoch 600 --lr_decay_epochs 420 480 540 --num_point 20000 --num_decoder_layers 6 \ | ||
--size_delta 0.0625 --heading_delta 0.04 --center_delta 0.1111111111111 \ | ||
--learning_rate 0.004 --decoder_learning_rate 0.0002 --weight_decay 0.00000001 --query_points_generator_loss_coef 0.2 --obj_loss_coef 0.4 \ | ||
--dataset sunrgbd --data_root <data directory> [--log_dir <log directory>] | ||
``` | ||
|
||
For `L6, O256` evaluation: | ||
|
||
```bash | ||
python eval_avg.py --num_point 20000 --num_decoder_layers 6 \ | ||
--checkpoint_path <checkpoint> --avg_times 5 \ | ||
--dataset sunrgbd --data_root <data directory> [--dump_dir <dump directory>] | ||
``` | ||
|
||
## Acknowledgements | ||
|
||
We thank a lot for the flexible codebase of [votenet](https://github.com/facebookresearch/votenet). | ||
|
||
## License | ||
|
||
The code is released under MIT License (see LICENSE file for details). |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.