Figure 1: An Example for FedAvg. You can create a scenario using generate_DATA.py
and run an algorithm using main.py
, clientNAME.py
, and serverNAME.py
.
We expose this user-friendly algorithm library (with an integrated evaluation platform) for beginners who intend to start federated learning (FL) study.
-
34 traditional FL (tFL) or personalized FL (pFL) algorithms, 3 scenarios, and 20 datasets.
-
Some experimental results are avalible here.
-
Refer to this guide to learn how to use it.
-
This library can simulate scenarios using the 4-layer CNN on Cifar100 for 500 clients on one NVIDIA GeForce RTX 3090 GPU card with only 5.08GB GPU memory cost.
-
To simultaneously support statistical and model heterogeneity, please refer to our extended project Heterogeneous Federated Learning (HtFL).
-
As we strive to meet diverse user demands, frequent updates to the project may alter default settings and scenario creation codes, affecting experimental results.
The origin of the statistical heterogeneity phenomenon is the personalization of users, who generate the non-IID (not Independent and Identically Distributed) and unbalanced data. With statistical heterogeneity existing in the FL scenario, a myriad of approaches have been proposed to crack this hard nut. In contrast, the personalized FL (pFL) may take the advantage of the statistically heterogeneious data to learn the personalized model for each user.
Thanks to @Stonesjtu, this library can also record the GPU memory usage for the model. By using the package opacus, we introduce DP (differential privacy) into this library (please refer to ./system/flcore/clients/clientavg.py
for example). Following FedCG, we also introduce the DLG (Deep Leakage from Gradients) attack and PSNR (Peak Signal-to-Noise Ratio) metric to evaluate the privacy-preserving ability of tFL/pFL algorithms (please refer to ./system/flcore/servers/serveravg.py
for example). Now we can train on some clients and evaluate on other new clients by setting args.num_new_clients
in ./system/main.py
. Note that not all the tFL/pFL algorithms support this feature.
Citation
@article{zhang2023pfllib,
title={PFLlib: Personalized Federated Learning Algorithm Library},
author={Zhang, Jianqing and Liu, Yang and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Cao, Jian},
journal={arXiv preprint arXiv:2312.04992},
year={2023}
}
-
FedAvg — Communication-Efficient Learning of Deep Networks from Decentralized Data AISTATS 2017
Update-correction-based tFL
-
SCAFFOLD - SCAFFOLD: Stochastic Controlled Averaging for Federated Learning ICML 2020
Regularization-based tFL
-
FedProx — Federated Optimization in Heterogeneous Networks MLsys 2020
-
FedDyn — Federated Learning Based on Dynamic Regularization ICLR 2021
Model-splitting-based tFL
-
MOON — Model-Contrastive Federated Learning CVPR 2021
Knowledge-distillation-based tFL
-
FedGen — Data-Free Knowledge Distillation for Heterogeneous Federated Learning ICML 2021
-
FedNTD — Preservation of the Global Knowledge by Not-True Distillation in Federated Learning NeurIPS 2022
-
FedMTL (not MOCHA) — Federated multi-task learning NeurIPS 2017
-
FedBN — FedBN: Federated Learning on non-IID Features via Local Batch Normalization ICLR 2021
Meta-learning-based pFL
-
Per-FedAvg — Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach NeurIPS 2020
Regularization-based pFL
-
pFedMe — Personalized Federated Learning with Moreau Envelopes NeurIPS 2020
-
Ditto — Ditto: Fair and robust federated learning through personalization ICML 2021
Personalized-aggregation-based pFL
-
APFL — Adaptive Personalized Federated Learning 2020
-
FedFomo — Personalized Federated Learning with First Order Model Optimization ICLR 2021
-
FedAMP — Personalized Cross-Silo Federated Learning on non-IID Data AAAI 2021
-
FedPHP — FedPHP: Federated Personalization with Inherited Private Models ECML PKDD 2021
-
APPLE — Adapt to Adaptation: Learning Personalization for Cross-Silo Federated Learning IJCAI 2022
-
FedALA — FedALA: Adaptive Local Aggregation for Personalized Federated Learning AAAI 2023
Model-splitting-based pFL
-
FedPer — Federated Learning with Personalization Layers 2019
-
LG-FedAvg — Think Locally, Act Globally: Federated Learning with Local and Global Representations 2020
-
FedRep — Exploiting Shared Representations for Personalized Federated Learning ICML 2021
-
FedRoD — On Bridging Generic and Personalized Federated Learning for Image Classification ICLR 2022
-
FedBABU — Fedbabu: Towards enhanced representation for federated image classification ICLR 2022
-
FedGC — Federated Learning for Face Recognition with Gradient Correction AAAI 2022
-
FedCP — FedCP: Separating Feature Information for Personalized Federated Learning via Conditional Policy KDD 2023
-
GPFL — GPFL: Simultaneously Learning Generic and Personalized Feature Information for Personalized Federated Learning ICCV 2023
-
FedGH — FedGH: Heterogeneous Federated Learning with Generalized Global Header ACM MM 2023
-
DBE — Eliminating Domain Bias for Federated Learning in Representation Space NeurIPS 2023
Knowledge-distillation-based pFL
-
FedDistill — Federated Knowledge Distillation 2020
-
FML — Federated Mutual Learning 2020
-
FedKD — Communication-efficient federated learning via knowledge distillation Nature Communications 2022
-
FedProto — FedProto: Federated Prototype Learning across Heterogeneous Clients AAAI 2022
-
FedPCL (w/o pre-trained models) — Federated learning from pre-trained models: A contrastive learning approach NeurIPS 2022
-
FedPAC — Personalized Federated Learning with Feature Alignment and Classifier Collaboration ICLR 2023
For the label skew scenario, we introduce 14 famous datasets: MNIST, EMNIST, Fashion-MNIST, Cifar10, Cifar100, AG News, Sogou News, Tiny-ImageNet, Country211, Flowers102, GTSRB, Shakespeare, and Stanford Cars, they can be easy split into IID and non-IID version. Since some codes for generating datasets such as splitting are the same for all datasets, we move these codes into ./dataset/utils/dataset_utils.py
. In non-IID scenario, 2 situations exist. The first one is the pathological non-IID scenario, the second one is practical non-IID scenario. In the pathological non-IID scenario, for example, the data on each client only contains the specific number of labels (maybe only 2 labels), though the data on all clients contains 10 labels such as MNIST dataset. In the practical non-IID scenario, Dirichlet distribution is utilized (please refer to this paper for details). We can input balance
for the iid scenario, where the data are uniformly distributed.
For the feature shift scenario, we use 3 datasets that are widely used in Domain Adaptation: Amazon Review (fetch raw data from this site), Digit5 (fetch raw data from this site), and DomainNet.
For the real-world (or IoT) scenario, we also introduce 3 naturally separated datasets: Omniglot (20 clients, 50 labels), HAR (Human Activity Recognition) (30 clients, 6 labels), PAMAP2 (9 clients, 12 labels). For the details of datasets and FL algorithms in IoT, please refer to my FL-IoT repo.
If you need another data set, just write another code to download it and then using the utils.
- MNIST
cd ./dataset python generate_mnist.py iid - - # for iid and unbalanced scenario # python generate_mnist.py iid balance - # for iid and balanced scenario # python generate_mnist.py noniid - pat # for pathological noniid and unbalanced scenario # python generate_mnist.py noniid - dir # for practical noniid and unbalanced scenario
The output of generate_mnist.py iid - -
Original number of samples of each label: [6903, 7877, 6990, 7141, 6824, 6313, 6876, 7293, 6825, 6958]
Client 0 Size of data: 1064 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 0 Samples of labels: [(0, 101), (1, 128), (2, 136), (3, 123), (4, 79), (5, 85), (6, 107), (7, 127), (8, 74), (9, 104)]
--------------------------------------------------
Client 1 Size of data: 1023 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 1 Samples of labels: [(0, 76), (1, 132), (2, 107), (3, 79), (4, 94), (5, 110), (6, 90), (7, 110), (8, 92), (9, 133)]
--------------------------------------------------
Client 2 Size of data: 923 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 2 Samples of labels: [(0, 136), (1, 89), (2, 84), (3, 88), (4, 78), (5, 124), (6, 120), (7, 66), (8, 69), (9, 69)]
--------------------------------------------------
Show more
Client 3 Size of data: 906 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 3 Samples of labels: [(0, 73), (1, 151), (2, 94), (3, 73), (4, 83), (5, 67), (6, 133), (7, 92), (8, 69), (9, 71)]
--------------------------------------------------
Client 4 Size of data: 1045 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 4 Samples of labels: [(0, 69), (1, 71), (2, 100), (3, 130), (4, 90), (5, 120), (6, 116), (7, 142), (8, 106), (9, 101)]
--------------------------------------------------
Client 5 Size of data: 1026 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 5 Samples of labels: [(0, 128), (1, 90), (2, 71), (3, 135), (4, 71), (5, 88), (6, 91), (7, 139), (8, 116), (9, 97)]
--------------------------------------------------
Client 6 Size of data: 1033 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 6 Samples of labels: [(0, 80), (1, 89), (2, 109), (3, 117), (4, 117), (5, 80), (6, 107), (7, 122), (8, 121), (9, 91)]
--------------------------------------------------
Client 7 Size of data: 1043 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 7 Samples of labels: [(0, 65), (1, 86), (2, 132), (3, 133), (4, 111), (5, 110), (6, 65), (7, 106), (8, 120), (9, 115)]
--------------------------------------------------
Client 8 Size of data: 1019 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 8 Samples of labels: [(0, 135), (1, 73), (2, 121), (3, 100), (4, 124), (5, 118), (6, 90), (7, 90), (8, 74), (9, 94)]
--------------------------------------------------
Client 9 Size of data: 938 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 9 Samples of labels: [(0, 70), (1, 131), (2, 77), (3, 85), (4, 98), (5, 79), (6, 94), (7, 85), (8, 112), (9, 107)]
--------------------------------------------------
Client 10 Size of data: 964 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 10 Samples of labels: [(0, 89), (1, 87), (2, 74), (3, 104), (4, 96), (5, 71), (6, 128), (7, 122), (8, 83), (9, 110)]
--------------------------------------------------
Client 11 Size of data: 955 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 11 Samples of labels: [(0, 114), (1, 91), (2, 87), (3, 141), (4, 83), (5, 124), (6, 86), (7, 80), (8, 76), (9, 73)]
--------------------------------------------------
Client 12 Size of data: 1015 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 12 Samples of labels: [(0, 84), (1, 101), (2, 71), (3, 113), (4, 131), (5, 78), (6, 116), (7, 101), (8, 89), (9, 131)]
--------------------------------------------------
Client 13 Size of data: 856 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 13 Samples of labels: [(0, 82), (1, 121), (2, 88), (3, 111), (4, 88), (5, 77), (6, 67), (7, 75), (8, 80), (9, 67)]
--------------------------------------------------
Client 14 Size of data: 1101 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 14 Samples of labels: [(0, 75), (1, 147), (2, 138), (3, 141), (4, 102), (5, 79), (6, 134), (7, 86), (8, 68), (9, 131)]
--------------------------------------------------
Client 15 Size of data: 937 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 15 Samples of labels: [(0, 92), (1, 102), (2, 84), (3, 104), (4, 111), (5, 89), (6, 76), (7, 70), (8, 91), (9, 118)]
--------------------------------------------------
Client 16 Size of data: 978 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 16 Samples of labels: [(0, 93), (1, 72), (2, 96), (3, 109), (4, 69), (5, 117), (6, 103), (7, 78), (8, 114), (9, 127)]
--------------------------------------------------
Client 17 Size of data: 1016 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 17 Samples of labels: [(0, 78), (1, 96), (2, 76), (3, 80), (4, 127), (5, 84), (6, 112), (7, 139), (8, 132), (9, 92)]
--------------------------------------------------
Client 18 Size of data: 1042 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 18 Samples of labels: [(0, 114), (1, 98), (2, 129), (3, 92), (4, 96), (5, 121), (6, 125), (7, 99), (8, 67), (9, 101)]
--------------------------------------------------
Client 19 Size of data: 1178 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 19 Samples of labels: [(0, 132), (1, 74), (2, 124), (3, 109), (4, 106), (5, 122), (6, 134), (7, 127), (8, 122), (9, 128)]
--------------------------------------------------
Client 20 Size of data: 948 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 20 Samples of labels: [(0, 77), (1, 87), (2, 88), (3, 131), (4, 130), (5, 85), (6, 77), (7, 96), (8, 76), (9, 101)]
--------------------------------------------------
Client 21 Size of data: 917 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 21 Samples of labels: [(0, 73), (1, 79), (2, 66), (3, 130), (4, 94), (5, 114), (6, 100), (7, 113), (8, 66), (9, 82)]
--------------------------------------------------
Client 22 Size of data: 1007 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 22 Samples of labels: [(0, 71), (1, 151), (2, 74), (3, 110), (4, 81), (5, 110), (6, 87), (7, 64), (8, 125), (9, 134)]
--------------------------------------------------
Client 23 Size of data: 990 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 23 Samples of labels: [(0, 127), (1, 89), (2, 118), (3, 64), (4, 132), (5, 93), (6, 86), (7, 86), (8, 79), (9, 116)]
--------------------------------------------------
Client 24 Size of data: 1137 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 24 Samples of labels: [(0, 125), (1, 135), (2, 134), (3, 93), (4, 128), (5, 108), (6, 130), (7, 134), (8, 76), (9, 74)]
--------------------------------------------------
Client 25 Size of data: 1119 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 25 Samples of labels: [(0, 86), (1, 156), (2, 130), (3, 127), (4, 124), (5, 101), (6, 117), (7, 100), (8, 82), (9, 96)]
--------------------------------------------------
Client 26 Size of data: 1059 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 26 Samples of labels: [(0, 121), (1, 138), (2, 135), (3, 139), (4, 81), (5, 86), (6, 73), (7, 82), (8, 94), (9, 110)]
--------------------------------------------------
Client 27 Size of data: 1042 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 27 Samples of labels: [(0, 65), (1, 126), (2, 112), (3, 99), (4, 103), (5, 91), (6, 105), (7, 91), (8, 123), (9, 127)]
--------------------------------------------------
Client 28 Size of data: 990 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 28 Samples of labels: [(0, 64), (1, 110), (2, 118), (3, 117), (4, 99), (5, 118), (6, 121), (7, 92), (8, 69), (9, 82)]
--------------------------------------------------
Client 29 Size of data: 935 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 29 Samples of labels: [(0, 124), (1, 96), (2, 79), (3, 97), (4, 92), (5, 76), (6, 75), (7, 116), (8, 80), (9, 100)]
--------------------------------------------------
Client 30 Size of data: 952 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 30 Samples of labels: [(0, 72), (1, 152), (2, 69), (3, 66), (4, 86), (5, 76), (6, 100), (7, 114), (8, 124), (9, 93)]
--------------------------------------------------
Client 31 Size of data: 979 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 31 Samples of labels: [(0, 77), (1, 87), (2, 81), (3, 112), (4, 102), (5, 120), (6, 80), (7, 110), (8, 107), (9, 103)]
--------------------------------------------------
Client 32 Size of data: 1034 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 32 Samples of labels: [(0, 111), (1, 119), (2, 106), (3, 118), (4, 105), (5, 123), (6, 94), (7, 71), (8, 95), (9, 92)]
--------------------------------------------------
Client 33 Size of data: 1096 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 33 Samples of labels: [(0, 136), (1, 129), (2, 84), (3, 96), (4, 134), (5, 90), (6, 121), (7, 80), (8, 108), (9, 118)]
--------------------------------------------------
Client 34 Size of data: 977 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 34 Samples of labels: [(0, 94), (1, 141), (2, 112), (3, 92), (4, 89), (5, 76), (6, 99), (7, 93), (8, 88), (9, 93)]
--------------------------------------------------
Client 35 Size of data: 1015 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 35 Samples of labels: [(0, 135), (1, 67), (2, 86), (3, 119), (4, 112), (5, 71), (6, 105), (7, 75), (8, 126), (9, 119)]
--------------------------------------------------
Client 36 Size of data: 871 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 36 Samples of labels: [(0, 67), (1, 64), (2, 77), (3, 95), (4, 114), (5, 87), (6, 66), (7, 125), (8, 85), (9, 91)]
--------------------------------------------------
Client 37 Size of data: 1098 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 37 Samples of labels: [(0, 134), (1, 141), (2, 117), (3, 92), (4, 126), (5, 103), (6, 100), (7, 78), (8, 83), (9, 124)]
--------------------------------------------------
Client 38 Size of data: 977 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 38 Samples of labels: [(0, 85), (1, 70), (2, 74), (3, 138), (4, 108), (5, 125), (6, 110), (7, 94), (8, 97), (9, 76)]
--------------------------------------------------
Client 39 Size of data: 957 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 39 Samples of labels: [(0, 113), (1, 116), (2, 119), (3, 72), (4, 118), (5, 107), (6, 91), (7, 72), (8, 68), (9, 81)]
--------------------------------------------------
Client 40 Size of data: 1109 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 40 Samples of labels: [(0, 121), (1, 149), (2, 125), (3, 96), (4, 64), (5, 76), (6, 136), (7, 104), (8, 103), (9, 135)]
--------------------------------------------------
Client 41 Size of data: 993 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 41 Samples of labels: [(0, 67), (1, 134), (2, 120), (3, 72), (4, 80), (5, 114), (6, 92), (7, 112), (8, 131), (9, 71)]
--------------------------------------------------
Client 42 Size of data: 987 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 42 Samples of labels: [(0, 132), (1, 66), (2, 85), (3, 141), (4, 83), (5, 102), (6, 66), (7, 94), (8, 98), (9, 120)]
--------------------------------------------------
Client 43 Size of data: 972 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 43 Samples of labels: [(0, 88), (1, 140), (2, 89), (3, 114), (4, 73), (5, 91), (6, 77), (7, 87), (8, 98), (9, 115)]
--------------------------------------------------
Client 44 Size of data: 1109 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 44 Samples of labels: [(0, 107), (1, 155), (2, 78), (3, 105), (4, 115), (5, 112), (6, 105), (7, 130), (8, 106), (9, 96)]
--------------------------------------------------
Client 45 Size of data: 1035 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 45 Samples of labels: [(0, 90), (1, 85), (2, 77), (3, 128), (4, 74), (5, 125), (6, 100), (7, 128), (8, 102), (9, 126)]
--------------------------------------------------
Client 46 Size of data: 1058 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 46 Samples of labels: [(0, 116), (1, 139), (2, 107), (3, 88), (4, 132), (5, 69), (6, 104), (7, 76), (8, 112), (9, 115)]
--------------------------------------------------
Client 47 Size of data: 841 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 47 Samples of labels: [(0, 105), (1, 71), (2, 70), (3, 84), (4, 87), (5, 98), (6, 82), (7, 81), (8, 69), (9, 94)]
--------------------------------------------------
Client 48 Size of data: 980 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 48 Samples of labels: [(0, 79), (1, 141), (2, 120), (3, 108), (4, 78), (5, 97), (6, 102), (7, 97), (8, 72), (9, 86)]
--------------------------------------------------
Client 49 Size of data: 20754 Labels: [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
Client 49 Samples of labels: [(0, 2155), (1, 2515), (2, 2142), (3, 1931), (4, 1926), (5, 1526), (6, 1981), (7, 2442), (8, 2208), (9, 1928)]
--------------------------------------------------
Total number of samples: 70000
The number of train samples: [798, 767, 692, 679, 783, 769, 774, 782, 764, 703, 723, 716, 761, 642, 825, 702, 733, 762, 781, 883, 711, 687, 755, 742, 852, 839, 794, 781, 742, 701, 714, 734, 775, 822, 732, 761, 653, 823, 732, 717, 831, 744, 740, 729, 831, 776, 793, 630, 735, 15565]
The number of test samples: [266, 256, 231, 227, 262, 257, 259, 261, 255, 235, 241, 239, 254, 214, 276, 235, 245, 254, 261, 295, 237, 230, 252, 248, 285, 280, 265, 261, 248, 234, 238, 245, 259, 274, 245, 254, 218, 275, 245, 240, 278, 249, 247, 243, 278, 259, 265, 211, 245, 5189]
Finish generating dataset.
The output of generate_mnist.py noniid - pat
Original number of samples of each label: [6903, 7877, 6990, 7141, 6824, 6313, 6876, 7293, 6825, 6958]
Client 0 Size of data: 799 Labels: [0. 1.]
Client 0 Samples of labels: [(0, 141), (1, 658)]
--------------------------------------------------
Client 1 Size of data: 687 Labels: [0. 1.]
Client 1 Samples of labels: [(0, 106), (1, 581)]
--------------------------------------------------
Client 2 Size of data: 4649 Labels: [0. 1.]
Client 2 Samples of labels: [(0, 3903), (1, 746)]
--------------------------------------------------
Show more
Client 3 Size of data: 853 Labels: [0. 1.]
Client 3 Samples of labels: [(0, 213), (1, 640)]
--------------------------------------------------
Client 4 Size of data: 826 Labels: [0. 1.]
Client 4 Samples of labels: [(0, 350), (1, 476)]
--------------------------------------------------
Client 5 Size of data: 1133 Labels: [0. 1.]
Client 5 Samples of labels: [(0, 577), (1, 556)]
--------------------------------------------------
Client 6 Size of data: 752 Labels: [0. 1.]
Client 6 Samples of labels: [(0, 459), (1, 293)]
--------------------------------------------------
Client 7 Size of data: 523 Labels: [0. 1.]
Client 7 Samples of labels: [(0, 304), (1, 219)]
--------------------------------------------------
Client 8 Size of data: 362 Labels: [0. 1.]
Client 8 Samples of labels: [(0, 198), (1, 164)]
--------------------------------------------------
Client 9 Size of data: 4196 Labels: [0. 1.]
Client 9 Samples of labels: [(0, 652), (1, 3544)]
--------------------------------------------------
Client 10 Size of data: 542 Labels: [2. 3.]
Client 10 Samples of labels: [(2, 456), (3, 86)]
--------------------------------------------------
Client 11 Size of data: 275 Labels: [2. 3.]
Client 11 Samples of labels: [(2, 140), (3, 135)]
--------------------------------------------------
Client 12 Size of data: 4615 Labels: [2. 3.]
Client 12 Samples of labels: [(2, 500), (3, 4115)]
--------------------------------------------------
Client 13 Size of data: 1322 Labels: [2. 3.]
Client 13 Samples of labels: [(2, 630), (3, 692)]
--------------------------------------------------
Client 14 Size of data: 930 Labels: [2. 3.]
Client 14 Samples of labels: [(2, 523), (3, 407)]
--------------------------------------------------
Client 15 Size of data: 701 Labels: [2. 3.]
Client 15 Samples of labels: [(2, 333), (3, 368)]
--------------------------------------------------
Client 16 Size of data: 1062 Labels: [2. 3.]
Client 16 Samples of labels: [(2, 525), (3, 537)]
--------------------------------------------------
Client 17 Size of data: 1134 Labels: [2. 3.]
Client 17 Samples of labels: [(2, 696), (3, 438)]
--------------------------------------------------
Client 18 Size of data: 707 Labels: [2. 3.]
Client 18 Samples of labels: [(2, 611), (3, 96)]
--------------------------------------------------
Client 19 Size of data: 2843 Labels: [2. 3.]
Client 19 Samples of labels: [(2, 2576), (3, 267)]
--------------------------------------------------
Client 20 Size of data: 880 Labels: [4. 5.]
Client 20 Samples of labels: [(4, 347), (5, 533)]
--------------------------------------------------
Client 21 Size of data: 878 Labels: [4. 5.]
Client 21 Samples of labels: [(4, 663), (5, 215)]
--------------------------------------------------
Client 22 Size of data: 3938 Labels: [4. 5.]
Client 22 Samples of labels: [(4, 3553), (5, 385)]
--------------------------------------------------
Client 23 Size of data: 1009 Labels: [4. 5.]
Client 23 Samples of labels: [(4, 381), (5, 628)]
--------------------------------------------------
Client 24 Size of data: 748 Labels: [4. 5.]
Client 24 Samples of labels: [(4, 223), (5, 525)]
--------------------------------------------------
Client 25 Size of data: 2630 Labels: [4. 5.]
Client 25 Samples of labels: [(4, 449), (5, 2181)]
--------------------------------------------------
Client 26 Size of data: 627 Labels: [4. 5.]
Client 26 Samples of labels: [(4, 194), (5, 433)]
--------------------------------------------------
Client 27 Size of data: 934 Labels: [4. 5.]
Client 27 Samples of labels: [(4, 356), (5, 578)]
--------------------------------------------------
Client 28 Size of data: 551 Labels: [4. 5.]
Client 28 Samples of labels: [(4, 234), (5, 317)]
--------------------------------------------------
Client 29 Size of data: 942 Labels: [4. 5.]
Client 29 Samples of labels: [(4, 424), (5, 518)]
--------------------------------------------------
Client 30 Size of data: 781 Labels: [6. 7.]
Client 30 Samples of labels: [(6, 220), (7, 561)]
--------------------------------------------------
Client 31 Size of data: 477 Labels: [6. 7.]
Client 31 Samples of labels: [(6, 78), (7, 399)]
--------------------------------------------------
Client 32 Size of data: 846 Labels: [6. 7.]
Client 32 Samples of labels: [(6, 576), (7, 270)]
--------------------------------------------------
Client 33 Size of data: 1180 Labels: [6. 7.]
Client 33 Samples of labels: [(6, 616), (7, 564)]
--------------------------------------------------
Client 34 Size of data: 4165 Labels: [6. 7.]
Client 34 Samples of labels: [(6, 3623), (7, 542)]
--------------------------------------------------
Client 35 Size of data: 885 Labels: [6. 7.]
Client 35 Samples of labels: [(6, 637), (7, 248)]
--------------------------------------------------
Client 36 Size of data: 3646 Labels: [6. 7.]
Client 36 Samples of labels: [(6, 164), (7, 3482)]
--------------------------------------------------
Client 37 Size of data: 1024 Labels: [6. 7.]
Client 37 Samples of labels: [(6, 337), (7, 687)]
--------------------------------------------------
Client 38 Size of data: 480 Labels: [6. 7.]
Client 38 Samples of labels: [(6, 278), (7, 202)]
--------------------------------------------------
Client 39 Size of data: 685 Labels: [6. 7.]
Client 39 Samples of labels: [(6, 347), (7, 338)]
--------------------------------------------------
Client 40 Size of data: 740 Labels: [8. 9.]
Client 40 Samples of labels: [(8, 251), (9, 489)]
--------------------------------------------------
Client 41 Size of data: 4175 Labels: [8. 9.]
Client 41 Samples of labels: [(8, 299), (9, 3876)]
--------------------------------------------------
Client 42 Size of data: 683 Labels: [8. 9.]
Client 42 Samples of labels: [(8, 164), (9, 519)]
--------------------------------------------------
Client 43 Size of data: 769 Labels: [8. 9.]
Client 43 Samples of labels: [(8, 164), (9, 605)]
--------------------------------------------------
Client 44 Size of data: 653 Labels: [8. 9.]
Client 44 Samples of labels: [(8, 385), (9, 268)]
--------------------------------------------------
Client 45 Size of data: 726 Labels: [8. 9.]
Client 45 Samples of labels: [(8, 636), (9, 90)]
--------------------------------------------------
Client 46 Size of data: 472 Labels: [8. 9.]
Client 46 Samples of labels: [(8, 78), (9, 394)]
--------------------------------------------------
Client 47 Size of data: 838 Labels: [8. 9.]
Client 47 Samples of labels: [(8, 473), (9, 365)]
--------------------------------------------------
Client 48 Size of data: 883 Labels: [8. 9.]
Client 48 Samples of labels: [(8, 677), (9, 206)]
--------------------------------------------------
Client 49 Size of data: 3844 Labels: [8. 9.]
Client 49 Samples of labels: [(8, 3698), (9, 146)]
--------------------------------------------------
Total number of samples: 70000
The number of train samples: [599, 515, 3486, 639, 619, 849, 564, 392, 271, 3147, 406, 206, 3461, 991, 697, 525, 796, 850, 530, 2132, 660, 658, 2953, 756, 561, 1972, 470, 700, 413, 706, 585, 357, 634, 885, 3123, 663, 2734, 768, 360, 513, 555, 3131, 512, 576, 489, 544, 354, 628, 662, 2883]
The number of test samples: [200, 172, 1163, 214, 207, 284, 188, 131, 91, 1049, 136, 69, 1154, 331, 233, 176, 266, 284, 177, 711, 220, 220, 985, 253, 187, 658, 157, 234, 138, 236, 196, 120, 212, 295, 1042, 222, 912, 256, 120, 172, 185, 1044, 171, 193, 164, 182, 118, 210, 221, 961]
Finish generating dataset.
The output of generate_mnist.py noniid - dir
(alpha = 0.1
for the Dirichlet distribution in ./dataset/utils/dataset_utils.py
)
Original number of samples of each label: [6903, 7877, 6990, 7141, 6824, 6313, 6876, 7293, 6825, 6958]
Client 0 Size of data: 1059 Labels: [1. 3. 4. 6. 8.]
Client 0 Samples of labels: [(1, 71), (3, 98), (4, 228), (6, 577), (8, 85)]
--------------------------------------------------
Client 1 Size of data: 1138 Labels: [2. 3. 4. 7. 8.]
Client 1 Samples of labels: [(2, 198), (3, 138), (4, 201), (7, 515), (8, 86)]
--------------------------------------------------
Client 2 Size of data: 755 Labels: [0. 1. 3. 7. 8.]
Client 2 Samples of labels: [(0, 75), (1, 107), (3, 130), (7, 291), (8, 152)]
--------------------------------------------------
Show more
Client 3 Size of data: 875 Labels: [1. 3. 5. 7.]
Client 3 Samples of labels: [(1, 254), (3, 74), (5, 160), (7, 387)]
--------------------------------------------------
Client 4 Size of data: 4228 Labels: [0. 2. 4. 5. 7. 8.]
Client 4 Samples of labels: [(0, 77), (2, 276), (4, 173), (5, 483), (7, 3087), (8, 132)]
--------------------------------------------------
Client 5 Size of data: 800 Labels: [0. 1. 2. 3. 4. 8.]
Client 5 Samples of labels: [(0, 140), (1, 269), (2, 120), (3, 94), (4, 77), (8, 100)]
--------------------------------------------------
Client 6 Size of data: 3286 Labels: [0. 1. 2. 3. 4. 8.]
Client 6 Samples of labels: [(0, 2434), (1, 213), (2, 281), (3, 132), (4, 117), (8, 109)]
--------------------------------------------------
Client 7 Size of data: 413 Labels: [2. 3. 4. 8.]
Client 7 Samples of labels: [(2, 160), (3, 80), (4, 87), (8, 86)]
--------------------------------------------------
Client 8 Size of data: 641 Labels: [1. 3. 7. 8.]
Client 8 Samples of labels: [(1, 129), (3, 127), (7, 238), (8, 147)]
--------------------------------------------------
Client 9 Size of data: 3359 Labels: [0. 2. 3. 6. 8.]
Client 9 Samples of labels: [(0, 132), (2, 263), (3, 69), (6, 2791), (8, 104)]
--------------------------------------------------
Client 10 Size of data: 461 Labels: [0. 3. 4. 8.]
Client 10 Samples of labels: [(0, 171), (3, 96), (4, 103), (8, 91)]
--------------------------------------------------
Client 11 Size of data: 7555 Labels: [0. 1. 3. 7. 9.]
Client 11 Samples of labels: [(0, 135), (1, 247), (3, 142), (7, 73), (9, 6958)]
--------------------------------------------------
Client 12 Size of data: 2435 Labels: [0. 2. 3. 8.]
Client 12 Samples of labels: [(0, 160), (2, 88), (3, 138), (8, 2049)]
--------------------------------------------------
Client 13 Size of data: 883 Labels: [3. 5. 7. 8.]
Client 13 Samples of labels: [(3, 64), (5, 267), (7, 417), (8, 135)]
--------------------------------------------------
Client 14 Size of data: 542 Labels: [0. 1. 4. 8.]
Client 14 Samples of labels: [(0, 89), (1, 138), (4, 186), (8, 129)]
--------------------------------------------------
Client 15 Size of data: 1403 Labels: [0. 1. 2. 3. 4. 5. 7. 8.]
Client 15 Samples of labels: [(0, 78), (1, 262), (2, 312), (3, 83), (4, 116), (5, 96), (7, 348), (8, 108)]
--------------------------------------------------
Client 16 Size of data: 990 Labels: [0. 1. 3. 7. 8.]
Client 16 Samples of labels: [(0, 169), (1, 224), (3, 73), (7, 374), (8, 150)]
--------------------------------------------------
Client 17 Size of data: 296 Labels: [2. 3. 8.]
Client 17 Samples of labels: [(2, 74), (3, 143), (8, 79)]
--------------------------------------------------
Client 18 Size of data: 242 Labels: [0. 3.]
Client 18 Samples of labels: [(0, 114), (3, 128)]
--------------------------------------------------
Client 19 Size of data: 642 Labels: [0. 1. 3. 4. 8.]
Client 19 Samples of labels: [(0, 151), (1, 94), (3, 88), (4, 159), (8, 150)]
--------------------------------------------------
Client 20 Size of data: 852 Labels: [0. 3. 5. 8.]
Client 20 Samples of labels: [(0, 177), (3, 126), (5, 470), (8, 79)]
--------------------------------------------------
Client 21 Size of data: 2732 Labels: [0. 1. 2. 3. 8.]
Client 21 Samples of labels: [(0, 73), (1, 140), (2, 248), (3, 2119), (8, 152)]
--------------------------------------------------
Client 22 Size of data: 1114 Labels: [1. 3. 4. 6. 8.]
Client 22 Samples of labels: [(1, 66), (3, 89), (4, 134), (6, 719), (8, 106)]
--------------------------------------------------
Client 23 Size of data: 503 Labels: [0. 4. 8.]
Client 23 Samples of labels: [(0, 143), (4, 214), (8, 146)]
--------------------------------------------------
Client 24 Size of data: 634 Labels: [2. 3. 4. 5. 8.]
Client 24 Samples of labels: [(2, 180), (3, 115), (4, 162), (5, 70), (8, 107)]
--------------------------------------------------
Client 25 Size of data: 3779 Labels: [0. 1. 2. 3. 4. 5. 7. 8.]
Client 25 Samples of labels: [(0, 76), (1, 192), (2, 205), (3, 108), (4, 2571), (5, 206), (7, 323), (8, 98)]
--------------------------------------------------
Client 26 Size of data: 1243 Labels: [0. 1. 2. 3. 4. 6. 8.]
Client 26 Samples of labels: [(0, 158), (1, 116), (2, 141), (3, 92), (4, 152), (6, 472), (8, 112)]
--------------------------------------------------
Client 27 Size of data: 1092 Labels: [0. 1. 3. 6. 8.]
Client 27 Samples of labels: [(0, 114), (1, 110), (3, 134), (6, 600), (8, 134)]
--------------------------------------------------
Client 28 Size of data: 494 Labels: [0. 3. 6. 8.]
Client 28 Samples of labels: [(0, 69), (3, 81), (6, 229), (8, 115)]
--------------------------------------------------
Client 29 Size of data: 887 Labels: [0. 1. 3. 6. 8.]
Client 29 Samples of labels: [(0, 80), (1, 267), (3, 112), (6, 336), (8, 92)]
--------------------------------------------------
Client 30 Size of data: 520 Labels: [2. 3. 8.]
Client 30 Samples of labels: [(2, 269), (3, 105), (8, 146)]
--------------------------------------------------
Client 31 Size of data: 1619 Labels: [0. 1. 2. 3. 4. 7. 8.]
Client 31 Samples of labels: [(0, 165), (1, 264), (2, 201), (3, 131), (4, 240), (7, 491), (8, 127)]
--------------------------------------------------
Client 32 Size of data: 846 Labels: [0. 2. 3. 4. 8.]
Client 32 Samples of labels: [(0, 73), (2, 295), (3, 86), (4, 249), (8, 143)]
--------------------------------------------------
Client 33 Size of data: 1833 Labels: [0. 1. 3. 4. 6. 7.]
Client 33 Samples of labels: [(0, 170), (1, 140), (3, 141), (4, 128), (6, 743), (7, 511)]
--------------------------------------------------
Client 34 Size of data: 1080 Labels: [0. 1. 2. 3. 4. 6. 8.]
Client 34 Samples of labels: [(0, 92), (1, 84), (2, 160), (3, 145), (4, 94), (6, 409), (8, 96)]
--------------------------------------------------
Client 35 Size of data: 962 Labels: [0. 1. 3. 5. 8.]
Client 35 Samples of labels: [(0, 84), (1, 215), (3, 106), (5, 407), (8, 150)]
--------------------------------------------------
Client 36 Size of data: 493 Labels: [0. 2. 3. 8.]
Client 36 Samples of labels: [(0, 70), (2, 247), (3, 96), (8, 80)]
--------------------------------------------------
Client 37 Size of data: 468 Labels: [0. 1. 3. 8.]
Client 37 Samples of labels: [(0, 128), (1, 141), (3, 124), (8, 75)]
--------------------------------------------------
Client 38 Size of data: 3961 Labels: [0. 1. 3. 4. 8.]
Client 38 Samples of labels: [(0, 169), (1, 3440), (3, 83), (4, 204), (8, 65)]
--------------------------------------------------
Client 39 Size of data: 1104 Labels: [0. 2. 3. 4. 5. 8.]
Client 39 Samples of labels: [(0, 148), (2, 89), (3, 124), (4, 148), (5, 443), (8, 152)]
--------------------------------------------------
Client 40 Size of data: 613 Labels: [0. 1. 3. 4. 8.]
Client 40 Samples of labels: [(0, 139), (1, 70), (3, 102), (4, 167), (8, 135)]
--------------------------------------------------
Client 41 Size of data: 3678 Labels: [0. 1. 3. 5. 8.]
Client 41 Samples of labels: [(0, 82), (1, 141), (3, 99), (5, 3292), (8, 64)]
--------------------------------------------------
Client 42 Size of data: 444 Labels: [0. 2. 3. 8.]
Client 42 Samples of labels: [(0, 151), (2, 85), (3, 118), (8, 90)]
--------------------------------------------------
Client 43 Size of data: 955 Labels: [0. 1. 3. 4. 5. 8.]
Client 43 Samples of labels: [(0, 150), (1, 177), (3, 81), (4, 214), (5, 255), (8, 78)]
--------------------------------------------------
Client 44 Size of data: 486 Labels: [3. 4. 7. 8.]
Client 44 Samples of labels: [(3, 102), (4, 125), (7, 144), (8, 115)]
--------------------------------------------------
Client 45 Size of data: 523 Labels: [0. 3. 4. 5.]
Client 45 Samples of labels: [(0, 65), (3, 147), (4, 147), (5, 164)]
--------------------------------------------------
Client 46 Size of data: 386 Labels: [0. 1. 3. 8.]
Client 46 Samples of labels: [(0, 93), (1, 67), (3, 114), (8, 112)]
--------------------------------------------------
Client 47 Size of data: 794 Labels: [0. 1. 3. 4. 7. 8.]
Client 47 Samples of labels: [(0, 136), (1, 100), (3, 150), (4, 233), (7, 94), (8, 81)]
--------------------------------------------------
Client 48 Size of data: 471 Labels: [0. 3. 4.]
Client 48 Samples of labels: [(0, 173), (3, 103), (4, 195)]
--------------------------------------------------
Client 49 Size of data: 3431 Labels: [1. 2. 3. 8.]
Client 49 Samples of labels: [(1, 139), (2, 3098), (3, 111), (8, 83)]
--------------------------------------------------
Total number of samples: 70000
The number of train samples: [794, 853, 566, 656, 3171, 600, 2464, 309, 480, 2519, 345, 5666, 1826, 662, 406, 1052, 742, 222, 181, 481, 639, 2049, 835, 377, 475, 2834, 932, 819, 370, 665, 390, 1214, 634, 1374, 810, 721, 369, 351, 2970, 828, 459, 2758, 333, 716, 364, 392, 289, 595, 353, 2573]
The number of test samples: [265, 285, 189, 219, 1057, 200, 822, 104, 161, 840, 116, 1889, 609, 221, 136, 351, 248, 74, 61, 161, 213, 683, 279, 126, 159, 945, 311, 273, 124, 222, 130, 405, 212, 459, 270, 241, 124, 117, 991, 276, 154, 920, 111, 239, 122, 131, 97, 199, 118, 858]
Finish generating dataset.
-
for MNIST and Fashion-MNIST
- Mclr_Logistic(1*28*28)
- LeNet()
- DNN(1*28*28, 100) # non-convex
-
for Cifar10, Cifar100 and Tiny-ImageNet
- Mclr_Logistic(3*32*32)
- FedAvgCNN()
- DNN(3*32*32, 100) # non-convex
- ResNet18, AlexNet, MobileNet, GoogleNet, etc.
-
for AG_News and Sogou_News
- LSTM()
- fastText() in Bag of Tricks for Efficient Text Classification
- TextCNN() in Convolutional Neural Networks for Sentence Classification
- TransformerModel() in Attention is all you need
-
for AmazonReview
-
for Omniglot
- FedAvgCNN()
-
for HAR and PAMAP
Install CUDA.
Install conda and activate conda.
conda env create -f env_cuda_latest.yaml # You may need to downgrade the torch using pip to match CUDA version
-
Create proper environments (see Environments).
-
Download this project to an appropriate location using git.
git clone https://github.com/TsingZ0/PFLlib.git
-
Build evaluation scenarios (see Datasets and scenarios (updating)).
-
Run evaluation:
cd ./system python main.py -data mnist -m cnn -algo FedAvg -gr 2000 -did 0 # using the MNIST dataset, the FedAvg algorithm, and the 4-layer CNN model
Or you can uncomment the lines you need in
./system/examples.sh
and run:cd ./system sh examples.sh
Note: The hyper-parameters have not been tuned for the algorithms. The values in ./system/examples.sh
are just examples. You need to tune the hyper-parameters by yourself.
If you need to simulate FL under practical situations, which includes client dropout, slow trainers, slow senders, and network TTL, you can set the following parameters to realize it.
-cdr
: The dropout rate for total clients. The selected clients will randomly drop at each training round.-tsr
and-ssr
: The rates for slow trainers and slow senders among all clients. Once a client was selected as "slow trainers", for example, it will always train slower than the original one. So does "slow senders".-tth
: The threshold for network TTL (ms).
It is easy to add new algorithms and datasets to this library.
-
To add a new dataset into this library, all you need to do is writing the download code and using the utils which is similar to
./dataset/generate_mnist.py
(you can also consider it as the template). -
To add a new algorithm, you can utilize the class Server and class Client, which are wrote in
./system/flcore/servers/serverbase.py
and./system/flcore/clients/clientbase.py
, respectively. -
To add a new model, just add it into
./system/flcore/trainmodel/models.py
. -
If you have a new optimizer while training, please add it into
./system/flcore/optimizers/fedoptimizer.py
-
The evaluation platform is also convenient for users to bulid a new platform for specific applications, such as our FL-IoT and HtFL.
If you are interested in the experimental results (e.g., the accuracy) of the above algorithms, you can find some results in our accepted FL papers (i.e., FedALA, FedCP, GPFL, and DBE) listed as follows that also use this library. Please note that this developing project may not be able to reproduce the results on these papers, since some basic settings may change due to the requests of the community. For example, we previously set shuffle=False
in clientbase.py
@inproceedings{zhang2023fedala,
title={Fedala: Adaptive local aggregation for personalized federated learning},
author={Zhang, Jianqing and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Guan, Haibing},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={37},
number={9},
pages={11237--11244},
year={2023}
}
@inproceedings{Zhang2023fedcp,
author = {Zhang, Jianqing and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Guan, Haibing},
title = {FedCP: Separating Feature Information for Personalized Federated Learning via Conditional Policy},
year = {2023},
booktitle = {Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining}
}
@inproceedings{zhang2023gpfl,
title={GPFL: Simultaneously Learning Global and Personalized Feature Information for Personalized Federated Learning},
author={Zhang, Jianqing and Hua, Yang and Wang, Hao and Song, Tao and Xue, Zhengui and Ma, Ruhui and Cao, Jian and Guan, Haibing},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={5041--5051},
year={2023}
}
@inproceedings{
zhang2023eliminating,
title={Eliminating Domain Bias for Federated Learning in Representation Space},
author={Jianqing Zhang and Yang Hua and Jian Cao and Hao Wang and Tao Song and Zhengui XUE and Ruhui Ma and Haibing Guan},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=nO5i1XdUS0}
}