DOI : 10.5281/zenodo.14233079
Rom-Pose is pose estimation model based on simple baseline and ASBU Use restored mask image for increasing accuracy of human pose estimation
Python 3.9.7 CUDA 11.1 relese NVIDIA GPU A5000 used
https://github.com/microsoft/human-pose-estimation.pytorch - for pose estimation model https://github.com/ducminhkhoi/Amodal-Instance-Seg-ASBU.git - for ASBU model
- Follow the Baseline code installation.
- Change Joints Dataset.py file
- Change lib/core/function.py
- Change lib/core/inference.py
https://cocodataset.org/#download
${POSE_ROOT}
|-- data
`-- |-- mpii
`-- |-- annot
| |-- gt_valid.mat
| |-- test.json
| |-- train.json
| |-- trainval.json
| `-- valid.json
`-- images
|-- 000001163.jpg
|-- 000003072.jpg
Mask image dataset using by data/makedataset.py
Set all the models need.
Make Whole COCO dataset which consist of answer mask dataset.
Train the ASBU model.
Train the HPE model with ASBU model's output.
Combine together to test.