Skip to content

Kmohamedalie/Seoul-Bike-Sharing-Demand_Regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

12 Commits
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Seoul Bike Sharing Demand - Multiple Linear Regression

Seoul.city.s.bike.sharing.service.offers.the.greatest.satisfaction.to.its.users.mp4

Source: Arirand

Task: Predicting Count of bikes rented at each hour(Rent Bike Count)

Dataset: UCI Machine Learning

Complete JupyterNotebook: Link

Metrics:

Algorithm MAE MSE RMSE R2
Linear Regression 318.88402 178535.387537 422.534481 0.560321

Additional Information about the dataset

Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes. The dataset contains weather information (Temperature, Humidity, Windspeed, Visibility, Dewpoint, Solar radiation, Snowfall, Rainfall), the number of bikes rented per hour and date information.


Attribute information

Date : year-month-day
Rented Bike count - Count of bikes rented at each hour
Hour - Hour of he day
Temperature-Temperature in Celsius
Humidity - %
Windspeed - m/s
Visibility - 10m
Dew point temperature - Celsius
Solar radiation - MJ/m2
Rainfall - mm
Snowfall - cm
Seasons - Winter, Spring, Summer, Autumn
Holiday - Holiday/No holiday
Functional Day - NoFunc(Non Functional Hours), Fun(Functional hours)

Releases

No releases published

Packages

No packages published