Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Unify PDMat and PDSparseMat + move SparseArrays support to an extension #188

Open
wants to merge 18 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 14 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "PDMats"
uuid = "90014a1f-27ba-587c-ab20-58faa44d9150"
version = "0.11.29"
version = "0.12.0"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -10,10 +10,18 @@ SuiteSparse = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9"
[compat]
julia = "1"

[extensions]
PDMatsSparseArraysExt = "SparseArrays"

[extras]
BandedMatrices = "aae01518-5342-5314-be14-df237901396f"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["BandedMatrices", "StaticArrays", "Test"]
test = ["BandedMatrices", "SparseArrays", "StaticArrays", "Test"]

[weakdeps]
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
SuiteSparse = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9"
29 changes: 3 additions & 26 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,16 +27,16 @@ Elemenent types are in princple all Real types, but in practice this is limited
* `PDMat`: full covariance matrix, defined as

```julia
struct PDMat{T<:Real,S<:AbstractMatrix} <: AbstractPDMat{T}
struct PDMat{T<:Real,S<:AbstractMatrix{T},F<:Factorization} <: AbstractPDMat{T}
mat::S # input matrix
chol::Cholesky{T,S} # Cholesky factorization of mat
fact::F # factorization of mat
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

One needs an inner constructor that checks isposdef(fact) before calling new. Otherwise I could call

E = eigen(A)
PDMat{eltype(A),typeof(A),typeof(E)}(A, E)

even if A is not posdef.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Currently none of the other constructors enforces positive semi-definite matrices: #22

So ideally this should be addressed more generally, to ensure that such checks are performed by all AbstractPDMat types. But I wonder if it should be left for a separate PR?

Copy link
Contributor

@timholy timholy Aug 8, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure. But it's not a hard change, we should just do it once other dust has settled. Given that the PDMat wrapper promises positive-definiteness, it is kinda important to enforce this, especially if we widen the type definition so that it can no longer be guaranteed from the input types alone.

end

# Constructors

PDMat(mat, chol) # with both the input matrix and a Cholesky factorization

PDMat(mat) # with the input matrix, of type Matrix or Symmetric
PDMat(mat) # with the input matrix
# Remarks: the Cholesky factorization will be computed
# upon construction.

Expand Down Expand Up @@ -73,29 +73,6 @@ end
ScalMat(d, v) # with dimension d and diagonal value v
```


* `PDSparseMat`: sparse covariance matrix, defined as

```julia
struct PDSparseMat{T<:Real,S<:AbstractSparseMatrix} <: AbstractPDMat{T}
mat::SparseMatrixCSC # input matrix
chol::CholTypeSparse # Cholesky factorization of mat
end

# Constructors

PDSparseMat(mat, chol) # with both the input matrix and a Cholesky factorization

PDSparseMat(mat) # with the sparse input matrix, of type SparseMatrixCSC
# Remarks: the Cholesky factorization will be computed
# upon construction.

PDSparseMat(chol) # with the Cholesky factorization
# Remarks: the sparse matrix 'mat' will be computed upon
# construction.
```


## Common interface

All subtypes of `AbstractPDMat` share the same API, *i.e.* with the same set of methods to operate on their instances. These methods are introduced below, where `a` is an instance of a subtype of `AbstractPDMat` to represent a positive definite matrix, `x` be a column vector or a matrix with `size(x,1) == size(a, 1) == size(a, 2)`, and `c` be a positive real value.
Expand Down
25 changes: 25 additions & 0 deletions ext/PDMatsSparseArraysExt/PDMatsSparseArraysExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
module PDMatsSparseArraysExt

using PDMats
using SparseArrays

using PDMats.LinearAlgebra
dkarrasch marked this conversation as resolved.
Show resolved Hide resolved

if isdefined(Base, :get_extension)
const HAVE_CHOLMOD = isdefined(SparseArrays, :CHOLMOD)
else
import SuiteSparse
const HAVE_CHOLMOD = isdefined(SuiteSparse, :CHOLMOD)
end

# https://github.com/JuliaLang/julia/pull/29749
if VERSION < v"1.1.0-DEV.792"
eachcol(A::AbstractVecOrMat) = (view(A, :, i) for i in axes(A, 2))
end

if HAVE_CHOLMOD
include("chol.jl")
include("pdsparsemat.jl")
end

end # module
9 changes: 9 additions & 0 deletions ext/PDMatsSparseArraysExt/chol.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
if isdefined(Base, :get_extension)
const CholTypeSparse{T} = SparseArrays.CHOLMOD.Factor{T}
else
const CholTypeSparse{T} = SuiteSparse.CHOLMOD.Factor{T}
end

# Take into account pivoting!
PDMats.chol_lower(cf::CholTypeSparse) = cf.PtL
PDMats.chol_upper(cf::CholTypeSparse) = cf.UP
142 changes: 142 additions & 0 deletions ext/PDMatsSparseArraysExt/pdsparsemat.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
"""
Sparse positive definite matrix together with a Cholesky factorization object.
"""
const PDSparseMat{T<:Real,S<:AbstractSparseMatrix{T},C<:CholTypeSparse} = PDMat{T,S,C}

function PDMats.PDMat(mat::AbstractSparseMatrix, chol::CholTypeSparse)
PDMat{eltype(mat),typeof(mat),typeof(chol)}(mat, chol)
end
Base.@deprecate PDMat{T,S}(d::Int, m::AbstractSparseMatrix{T}, c::CholTypeSparse) where {T,S} PDSparseMat{T,S,typeof(c)}(m, c)

PDMats.PDMat(mat::SparseMatrixCSC) = PDMat(mat, cholesky(mat))
PDMats.PDMat(fac::CholTypeSparse) = PDMat(sparse(fac), fac)

PDMats.AbstractPDMat(A::CholTypeSparse) = PDMat(A)

### Conversion
function Base.convert(::Type{PDMat{T}}, a::PDSparseMat) where {T<:Real}
# CholTypeSparse only supports Float64 and ComplexF64 type parameters!
# So there is no point in recomputing `cholesky(mat)` and we just reuse
# the existing Cholesky factorization
mat = convert(AbstractMatrix{T}, a.mat)
return PDMat{T,typeof(mat),typeof(a.fact)}(mat, a.fact)
end

### Arithmetics

Base.:\(a::PDSparseMat{T}, x::AbstractVecOrMat{T}) where {T<:Real} = convert(Array{T},a.fact \ convert(Array{Float64},x)) #to avoid limitations in sparse factorization library CHOLMOD, see e.g., julia issue #14076
Base.:/(x::AbstractVecOrMat{T}, a::PDSparseMat{T}) where {T<:Real} = convert(Array{T},convert(Array{Float64},x) / a.fact )

### Algebra

Base.inv(a::PDSparseMat) = PDMat(inv(a.mat))
LinearAlgebra.cholesky(a::PDSparseMat) = a.fact
Base.sqrt(A::PDSparseMat) = PDMat(sqrt(Hermitian(Matrix(A))))

### whiten and unwhiten

function PDMats.whiten!(r::AbstractVecOrMat, a::PDSparseMat, x::AbstractVecOrMat)
PDMats.@check_argdims axes(r) == axes(x)
PDMats.@check_argdims a.dim == size(x, 1)
# Can't use `ldiv!` due to missing support in SparseArrays
return copyto!(r, PDMats.chol_lower(cholesky(a)) \ x)
end

function PDMats.unwhiten!(r::AbstractVecOrMat, a::PDSparseMat, x::AbstractVecOrMat)
PDMats.@check_argdims axes(r) == axes(x)
PDMats.@check_argdims a.dim == size(x, 1)
# `*` is not defined for `PtL` factor components,
# so we can't use `chol_lower(cholesky(a)) * x`
C = cholesky(a)
PtL = sparse(C.L)[C.p, :]
return copyto!(r, PtL * x)
end

function PDMats.whiten(a::PDSparseMat, x::AbstractVecOrMat)
PDMats.@check_argdims a.dim == size(x, 1)
return PDMats.chol_lower(cholesky(a)) \ x
end

function PDMats.unwhiten(a::PDSparseMat, x::AbstractVecOrMat)
PDMats.@check_argdims a.dim == size(x, 1)
# `*` is not defined for `PtL` factor components,
# so we can't use `chol_lower(cholesky(a)) * x`
C = cholesky(a)
PtL = sparse(C.L)[C.p, :]
return PtL * x
end

### quadratic forms

function PDMats.quad(a::PDSparseMat, x::AbstractVecOrMat)
PDMats.@check_argdims a.dim == size(x, 1)
# https://github.com/JuliaLang/julia/commit/2425ae760fb5151c5c7dd0554e87c5fc9e24de73
if VERSION < v"1.4.0-DEV.92"
z = a.mat * x
return x isa AbstractVector ? dot(x, z) : map(dot, eachcol(x), eachcol(z))
else
return x isa AbstractVector ? dot(x, a.mat, x) : map(Base.Fix1(quad, a), eachcol(x))
end
end

function PDMats.quad!(r::AbstractArray, a::PDSparseMat, x::AbstractMatrix)
PDMats.@check_argdims eachindex(r) == axes(x, 2)
@inbounds for i in axes(x, 2)
xi = view(x, :, i)
# https://github.com/JuliaLang/julia/commit/2425ae760fb5151c5c7dd0554e87c5fc9e24de73
if VERSION < v"1.4.0-DEV.92"
# Can't use `lmul!` with buffer due to missing support in SparseArrays
r[i] = dot(xi, a.mat * xi)
else
r[i] = dot(xi, a.mat, xi)
end
end
return r
end

function PDMats.invquad(a::PDSparseMat, x::AbstractVecOrMat)
PDMats.@check_argdims a.dim == size(x, 1)
z = cholesky(a) \ x
return x isa AbstractVector ? dot(x, z) : map(dot, eachcol(x), eachcol(z))
end

function PDMats.invquad!(r::AbstractArray, a::PDSparseMat, x::AbstractMatrix)
PDMats.@check_argdims eachindex(r) == axes(x, 2)
PDMats.@check_argdims a.dim == size(x, 1)
# Can't use `ldiv!` with buffer due to missing support in SparseArrays
C = cholesky(a)
@inbounds for i in axes(x, 2)
xi = view(x, :, i)
r[i] = dot(xi, C \ xi)
end
return r
end


### tri products

function PDMats.X_A_Xt(a::PDSparseMat, x::AbstractMatrix{<:Real})
PDMats.@check_argdims a.dim == size(x, 2)
z = a.mat * transpose(x)
return Symmetric(x * z)
end


function PDMats.Xt_A_X(a::PDSparseMat, x::AbstractMatrix{<:Real})
PDMats.@check_argdims a.dim == size(x, 1)
z = a.mat * x
return Symmetric(transpose(x) * z)
end


function PDMats.X_invA_Xt(a::PDSparseMat, x::AbstractMatrix{<:Real})
PDMats.@check_argdims a.dim == size(x, 2)
z = cholesky(a) \ collect(transpose(x))
return Symmetric(x * z)
end

function PDMats.Xt_invA_X(a::PDSparseMat, x::AbstractMatrix{<:Real})
PDMats.@check_argdims a.dim == size(x, 1)
z = cholesky(a) \ x
return Symmetric(transpose(x) * z)
end
14 changes: 5 additions & 9 deletions src/PDMats.jl
Original file line number Diff line number Diff line change
@@ -1,14 +1,13 @@
module PDMats

using LinearAlgebra, SparseArrays, SuiteSparse
using LinearAlgebra

import Base: +, *, \, /, ==, convert, inv, Matrix, kron

export
# Types
AbstractPDMat,
PDMat,
PDSparseMat,
PDiagMat,
ScalMat,

Expand All @@ -35,19 +34,12 @@ module PDMats
"""
abstract type AbstractPDMat{T<:Real} <: AbstractMatrix{T} end

const HAVE_CHOLMOD = isdefined(SuiteSparse, :CHOLMOD)

# source files

include("utils.jl")
include("chol.jl")

include("pdmat.jl")

if HAVE_CHOLMOD
include("pdsparsemat.jl")
end

include("pdiagmat.jl")
include("scalmat.jl")

Expand All @@ -56,4 +48,8 @@ module PDMats

include("deprecates.jl")

# Support for sparse arrays
if !isdefined(Base, :get_extension)
include("../ext/PDMatsSparseArraysExt/PDMatsSparseArraysExt.jl")
end
end # module
38 changes: 0 additions & 38 deletions src/addition.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,38 +4,18 @@
+(a::PDMat, b::AbstractPDMat) = PDMat(a.mat + Matrix(b))
+(a::PDiagMat, b::AbstractPDMat) = PDMat(_adddiag!(Matrix(b), a.diag, true))
+(a::ScalMat, b::AbstractPDMat) = PDMat(_adddiag!(Matrix(b), a.value))
if HAVE_CHOLMOD
+(a::PDSparseMat, b::AbstractPDMat) = PDMat(a.mat + Matrix(b))
end

+(a::PDMat, b::PDMat) = PDMat(a.mat + b.mat)
+(a::PDMat, b::PDiagMat) = PDMat(_adddiag(a.mat, b.diag))
+(a::PDMat, b::ScalMat) = PDMat(_adddiag(a.mat, b.value))
if HAVE_CHOLMOD
+(a::PDMat, b::PDSparseMat) = PDMat(a.mat + b.mat)
end

+(a::PDiagMat, b::PDMat) = PDMat(_adddiag(b.mat, a.diag))
+(a::PDiagMat, b::PDiagMat) = PDiagMat(a.diag + b.diag)
+(a::PDiagMat, b::ScalMat) = PDiagMat(a.diag .+ b.value)
if HAVE_CHOLMOD
+(a::PDiagMat, b::PDSparseMat) = PDSparseMat(_adddiag(b.mat, a.diag))
end

+(a::ScalMat, b::PDMat) = PDMat(_adddiag(b.mat, a.value))
+(a::ScalMat, b::PDiagMat) = PDiagMat(a.value .+ b.diag)
+(a::ScalMat, b::ScalMat) = ScalMat(a.dim, a.value + b.value)
if HAVE_CHOLMOD
+(a::ScalMat, b::PDSparseMat) = PDSparseMat(_adddiag(b.mat, a.value))
end

if HAVE_CHOLMOD
+(a::PDSparseMat, b::PDMat) = PDMat(Matrix(a) + b.mat)
+(a::PDSparseMat, b::PDiagMat) = PDSparseMat(_adddiag(a.mat, b.diag))
+(a::PDSparseMat, b::ScalMat) = PDSparseMat(_adddiag(a.mat, b.value))
+(a::PDSparseMat, b::PDSparseMat) = PDSparseMat(a.mat + b.mat)
end


# between pdmat and uniformscaling (multiple of identity)

Expand All @@ -45,34 +25,16 @@ end
pdadd(a::PDMat, b::AbstractPDMat, c::Real) = PDMat(a.mat + Matrix(b * c))
pdadd(a::PDiagMat, b::AbstractPDMat, c::Real) = PDMat(_adddiag!(Matrix(b * c), a.diag, one(c)))
pdadd(a::ScalMat, b::AbstractPDMat, c::Real) = PDMat(_adddiag!(Matrix(b * c), a.value))
if HAVE_CHOLMOD
pdadd(a::PDSparseMat, b::AbstractPDMat, c::Real) = PDMat(a.mat + Matrix(b * c))
end

pdadd(a::PDMat, b::PDMat, c::Real) = PDMat(a.mat + b.mat * c)
pdadd(a::PDMat, b::PDiagMat, c::Real) = PDMat(_adddiag(a.mat, b.diag, c))
pdadd(a::PDMat, b::ScalMat, c::Real) = PDMat(_adddiag(a.mat, b.value * c))
if HAVE_CHOLMOD
pdadd(a::PDMat, b::PDSparseMat, c::Real) = PDMat(a.mat + b.mat * c)
end

pdadd(a::PDiagMat, b::PDMat, c::Real) = PDMat(_adddiag!(b.mat * c, a.diag, one(c)))
pdadd(a::PDiagMat, b::PDiagMat, c::Real) = PDiagMat(a.diag + b.diag * c)
pdadd(a::PDiagMat, b::ScalMat, c::Real) = PDiagMat(a.diag .+ b.value * c)
if HAVE_CHOLMOD
pdadd(a::PDiagMat, b::PDSparseMat, c::Real) = PDSparseMat(_adddiag!(b.mat * c, a.diag, one(c)))
end

pdadd(a::ScalMat, b::PDMat, c::Real) = PDMat(_adddiag!(b.mat * c, a.value))
pdadd(a::ScalMat, b::PDiagMat, c::Real) = PDiagMat(a.value .+ b.diag * c)
pdadd(a::ScalMat, b::ScalMat, c::Real) = ScalMat(a.dim, a.value + b.value * c)
if HAVE_CHOLMOD
pdadd(a::ScalMat, b::PDSparseMat, c::Real) = PDSparseMat(_adddiag!(b.mat * c, a.value))
end

if HAVE_CHOLMOD
pdadd(a::PDSparseMat, b::PDMat, c::Real) = PDMat(a.mat + b.mat * c)
pdadd(a::PDSparseMat, b::PDiagMat, c::Real) = PDSparseMat(_adddiag(a.mat, b.diag, c))
pdadd(a::PDSparseMat, b::ScalMat, c::Real) = PDSparseMat(_adddiag(a.mat, b.value * c))
pdadd(a::PDSparseMat, b::PDSparseMat, c::Real) = PDSparseMat(a.mat + b.mat * c)
end
8 changes: 0 additions & 8 deletions src/chol.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,14 +17,6 @@ chol_lower(a::Matrix) = cholesky(Symmetric(a, :L)).L
# type-restricted to be Real, so they are equivalent.
chol_upper(a::Matrix) = cholesky(Symmetric(a, :U)).U

if HAVE_CHOLMOD
CholTypeSparse{T} = SuiteSparse.CHOLMOD.Factor{T}

# Take into account pivoting!
chol_lower(cf::CholTypeSparse) = cf.PtL
chol_upper(cf::CholTypeSparse) = cf.UP
end

# Interface for `Cholesky`

dim(A::Cholesky) = LinearAlgebra.checksquare(A)
Expand Down
2 changes: 1 addition & 1 deletion src/deprecates.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ using Base: @deprecate

@deprecate dim(a::AbstractMatrix) LinearAlgebra.checksquare(a)

@deprecate PDMat{T,S}(d::Int, m::AbstractMatrix{T}, c::Cholesky{T,S}) where {T,S} PDMat{T,S}(m, c)
@deprecate PDMat{T,S}(d::Int, m::AbstractMatrix{T}, c::Cholesky{T,S}) where {T,S} PDMat{T,S,Cholesky{T,S}}(m, c)

@deprecate PDiagMat(dim::Int, diag::AbstractVector{<:Real}) PDiagMat(diag)
@deprecate PDiagMat{T,V}(dim, diag) where {T<:Real, V<:AbstractVector{T}} PDiagMat{T,V}(diag)
Expand Down
Loading
Loading