-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add blog post on CUDA.jl 5.3 and 5.3.
- Loading branch information
Showing
2 changed files
with
213 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
+++ | ||
title = "CUDA.jl 5.2 and 5.3: Maintenance releases" | ||
author = "Tim Besard" | ||
external = true | ||
abstract = """ | ||
CUDA.jl 5.2 and 5.3 are two minor release of CUDA.jl that mostly focus on bug | ||
fixes and minor improvements, but also come with a number of interesting new | ||
features. This blog post summarizes the changes in these releases.""" | ||
+++ | ||
|
||
{{abstract}} | ||
|
||
|
||
## Profiler improvements | ||
|
||
CUDA.jl 5.1 introduced a new native profiler, which can be used to profile Julia | ||
GPU applications without having to use NSight Systems or other external tools. | ||
The tool has seen continued development, mostly improving its robustness, but | ||
CUDA.jl now also provides a `@bprofile` equivalent that runs your application | ||
multiple times and reports on the time distribution of individual events: | ||
|
||
```julia-repl | ||
julia> CUDA.@bprofile CuArray([1]) .+ 1 | ||
Profiler ran for 1.0 s, capturing 1427349 events. | ||
Host-side activity: calling CUDA APIs took 792.95 ms (79.29% of the trace) | ||
┌──────────┬────────────┬────────┬───────────────────────────────────────┬─────────────────────────┐ | ||
│ Time (%) │ Total time │ Calls │ Time distribution │ Name │ | ||
├──────────┼────────────┼────────┼───────────────────────────────────────┼─────────────────────────┤ | ||
│ 19.27% │ 192.67 ms │ 109796 │ 1.75 µs ± 10.19 ( 0.95 ‥ 1279.83) │ cuMemAllocFromPoolAsync │ | ||
│ 17.08% │ 170.8 ms │ 54898 │ 3.11 µs ± 0.27 ( 2.15 ‥ 23.84) │ cuLaunchKernel │ | ||
│ 16.77% │ 167.67 ms │ 54898 │ 3.05 µs ± 0.24 ( 0.48 ‥ 16.69) │ cuCtxSynchronize │ | ||
│ 14.11% │ 141.12 ms │ 54898 │ 2.57 µs ± 0.79 ( 1.67 ‥ 70.57) │ cuMemcpyHtoDAsync │ | ||
│ 1.70% │ 17.04 ms │ 54898 │ 310.36 ns ± 132.89 (238.42 ‥ 5483.63) │ cuStreamSynchronize │ | ||
└──────────┴────────────┴────────┴───────────────────────────────────────┴─────────────────────────┘ | ||
Device-side activity: GPU was busy for 87.38 ms (8.74% of the trace) | ||
┌──────────┬────────────┬───────┬───────────────────────────────────────┬────────────────────┐ | ||
│ Time (%) │ Total time │ Calls │ Time distribution │ Name │ | ||
├──────────┼────────────┼───────┼───────────────────────────────────────┼────────────────────┤ | ||
│ 6.66% │ 66.61 ms │ 54898 │ 1.21 µs ± 0.16 ( 0.95 ‥ 1.67) │ kernel │ | ||
│ 2.08% │ 20.77 ms │ 54898 │ 378.42 ns ± 147.66 (238.42 ‥ 1192.09) │ [copy to device] │ | ||
└──────────┴────────────┴───────┴───────────────────────────────────────┴────────────────────┘ | ||
NVTX ranges: | ||
┌──────────┬────────────┬───────┬────────────────────────────────────────┬─────────────────────┐ | ||
│ Time (%) │ Total time │ Calls │ Time distribution │ Name │ | ||
├──────────┼────────────┼───────┼────────────────────────────────────────┼─────────────────────┤ | ||
│ 98.99% │ 989.94 ms │ 54898 │ 18.03 µs ± 49.88 ( 15.26 ‥ 10731.22) │ @bprofile.iteration │ | ||
└──────────┴────────────┴───────┴────────────────────────────────────────┴─────────────────────┘ | ||
``` | ||
|
||
By default, `CUDA.@bprofile` runs the application for 1 second, but this can be | ||
adjusted using the `time` keyword argument. | ||
|
||
Display of the time distribution isn't limited to `CUDA.@bprofile`, and will | ||
also be used by `CUDA.@profile` when any operation is called more than once. For | ||
example, with the broadcasting example from above we allocate both the input | ||
`CuArray` and the broadcast result, which results in two calls to the allocator: | ||
|
||
```julia-repl | ||
julia> CUDA.@profile CuArray([1]) .+ 1 | ||
Host-side activity: | ||
┌──────────┬────────────┬───────┬─────────────────────────────────────┬─────────────────────────┐ | ||
│ Time (%) │ Total time │ Calls │ Time distribution │ Name │ | ||
├──────────┼────────────┼───────┼─────────────────────────────────────┼─────────────────────────┤ | ||
│ 99.92% │ 99.42 ms │ 1 │ │ cuMemcpyHtoDAsync │ | ||
│ 0.02% │ 21.22 µs │ 2 │ 10.61 µs ± 6.57 ( 5.96 ‥ 15.26) │ cuMemAllocFromPoolAsync │ | ||
│ 0.02% │ 17.88 µs │ 1 │ │ cuLaunchKernel │ | ||
│ 0.00% │ 953.67 ns │ 1 │ │ cuStreamSynchronize │ | ||
└──────────┴────────────┴───────┴─────────────────────────────────────┴─────────────────────────┘ | ||
``` | ||
|
||
|
||
## Kernel launch debugging | ||
|
||
A common issue with CUDA programming is that kernel launches may fail when | ||
exhausting certain resources, such as shared memory or registers. This typically | ||
results in a cryptic error message, but CUDA.jl will now try to diagnose launch | ||
failures and provide a more helpful error message, as suggested by | ||
[@simonbyrne](https://github.com/simonbyrne): | ||
|
||
For example, when using more parameter memory than allowed by the architecture: | ||
|
||
```julia-repl | ||
julia> kernel(x) = nothing | ||
julia> @cuda kernel(ntuple(_->UInt64(1), 2^13)) | ||
ERROR: Kernel invocation uses too much parameter memory. | ||
64.016 KiB exceeds the 31.996 KiB limit imposed by sm_89 / PTX v8.2. | ||
``` | ||
|
||
Or when using an invalid launch configuration, violating a device limit: | ||
|
||
```julia-repl | ||
julia> @cuda threads=2000 identity(nothing) | ||
ERROR: Number of threads in x-dimension exceeds device limit (2000 > 1024). | ||
caused by: CUDA error: invalid argument (code 1, ERROR_INVALID_VALUE) | ||
``` | ||
|
||
We also diagnose launch failures that involve kernel-specific limits, such as | ||
exceeding the number of threads that are allowed in a block (e.g., because of | ||
register use): | ||
|
||
```julia-repl | ||
julia> @cuda threads=1024 heavy_kernel() | ||
ERROR: Number of threads per block exceeds kernel limit (1024 > 512). | ||
caused by: CUDA error: invalid argument (code 1, ERROR_INVALID_VALUE) | ||
``` | ||
|
||
|
||
## Sorting improvements | ||
|
||
Thanks to [@xaellison](https://github.com/xaellison), our bitonic sorting | ||
implementation now supports sorting specific dimensions, making it possible to | ||
implement `sortperm` for multi-dimensional arrays: | ||
|
||
```julia-repl | ||
julia> A = cu([8 7; 5 6]) | ||
2×2 CuArray{Int64, 2, Mem.DeviceBuffer}: | ||
8 7 | ||
5 6 | ||
julia> sortperm(A, dims = 1) | ||
2×2 CuArray{Int64, 2, Mem.DeviceBuffer}: | ||
2 4 | ||
1 3 | ||
julia> sortperm(A, dims = 2) | ||
2×2 CuArray{Int64, 2, Mem.DeviceBuffer}: | ||
3 1 | ||
2 4 | ||
``` | ||
|
||
The bitonic kernel is now used for all sorting operations, in favor of the often | ||
slower quicksort implementation: | ||
|
||
```julia-repl | ||
# before (quicksort) | ||
julia> @btime CUDA.@sync sort($(CUDA.rand(1024, 1024)); dims=1) | ||
2.760 ms (30 allocations: 1.02 KiB) | ||
# after (bitonic sort) | ||
julia> @btime CUDA.@sync sort($(CUDA.rand(1024, 1024)); dims=1) | ||
246.386 μs (567 allocations: 13.66 KiB) | ||
# reference CPU time | ||
julia> @btime sort($(rand(Float32, 1024, 1024)); dims=1) | ||
4.795 ms (1030 allocations: 5.07 MiB) | ||
``` | ||
|
||
|
||
## Unified memory improvements | ||
|
||
CUDA.jl 5.1 greatly improved support for unified memory, and this has continued | ||
in CUDA.jl 5.2 and 5.3. Most notably, when broadcasting `CuArray`s we now | ||
correctly preserve the memory type of the input arrays. This means that if you | ||
broadcast a `CuArray` that is allocated as unified memory, the result will also | ||
be allocated as unified memory. In case of a conflict, e.g. broadcasting a | ||
unified `CuArray` with one backed by device memory, we will prefer unified | ||
memory: | ||
|
||
```julia-repl | ||
julia> cu([1]; host=true) .+ 1 | ||
1-element CuArray{Int64, 1, Mem.HostBuffer}: | ||
2 | ||
julia> cu([1]; host=true) .+ cu([2]; device=true) | ||
1-element CuArray{Int64, 1, Mem.UnifiedBuffer}: | ||
3 | ||
``` | ||
|
||
|
||
## Software updates | ||
|
||
Finally, we also did routine updates of the software stack, support the latest | ||
and greatest by NVIDIA. This includes support for **CUDA 12.4** (Update 1), | ||
**cuDNN 9**, and **cuTENSOR 2.0**. This latest release of cuTENSOR is noteworthy | ||
as it revamps the API in a backwards-incompatible way, and CUDA.jl has opted to | ||
follow this change. For more details, refer to the [cuTENSOR 2 migration | ||
guide](https://docs.nvidia.com/cuda/cutensor/latest/api_transition.html) by | ||
NVIDIA. | ||
|
||
Of course, cuTENSOR.jl also provides a high-level Julia API which has been | ||
mostly unaffected by these changes: | ||
|
||
```julia | ||
using CUDA | ||
A = CUDA.rand(7, 8, 3, 2) | ||
B = CUDA.rand(3, 2, 2, 8) | ||
C = CUDA.rand(3, 3, 7, 2) | ||
|
||
using cuTENSOR | ||
tA = CuTensor(A, ['a', 'f', 'b', 'e']) | ||
tB = CuTensor(B, ['c', 'e', 'd', 'f']) | ||
tC = CuTensor(C, ['b', 'c', 'a', 'd']) | ||
|
||
using LinearAlgebra | ||
mul!(tC, tA, tB) | ||
``` | ||
|
||
This API is still quite underdeveloped, so if you are a user of cuTENSOR.jl and | ||
have to adapt to the new API, now is a good time to consider improving the | ||
high-level interface instead! | ||
|
||
|
||
## Future releases | ||
|
||
The next release of CUDA.jl is gearing up to be a much larger release, with | ||
significant changes to both the API and internals of the package. Although the | ||
intent is to keep these changes non-breaking, it is always possible that some | ||
code will be affected in unexpected ways, so we encourage users to test the | ||
upcoming release by simply running `] add CUDA#master` and report any issues. |