Skip to content

Commit

Permalink
Merge pull request #12 from JuliaConstraints/dev
Browse files Browse the repository at this point in the history
New version (doc + copy clipboard)
  • Loading branch information
Azzaare authored Oct 8, 2024
2 parents 67a7702 + 9f6d8b1 commit 955b9ad
Show file tree
Hide file tree
Showing 10 changed files with 64 additions and 32 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ConstraintsTranslator"
uuid = "314c63f5-3dda-4b35-95e7-4cc933f13053"
authors = ["Jean-François BAFFIER (@Azzaare)"]
version = "0.0.2"
version = "0.0.3"

[deps]
Constraints = "30f324ab-b02d-43f0-b619-e131c61659f7"
Expand Down
9 changes: 2 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,19 +37,14 @@ Finally, we can start playing with the package. Below, an example for translatin
```julia
using ConstraintsTranslator

llm = GoogleLLM("gemini-1.5-pro")
llm = GoogleLLM("gemini-1.5-pro-latest")

description = """
We need to determine the shortest possible route for a salesman who must visit a set of cities exactly once and return to the starting city.
The objective is to minimize the total travel distance while ensuring that each city is visited exactly once.
Example input data:
1. cities.csv
city_id,city_name
1,CityA
2,CityB
2. distances.csv
1. distances.csv
from,to,distance
CityA,CityB,10
CityA,CityC,8
Expand Down
1 change: 1 addition & 0 deletions src/ConstraintsTranslator.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ module ConstraintsTranslator
import Constraints: USUAL_CONSTRAINTS
import HTTP
import InteractiveUtils
import InteractiveUtils: clipboard
import JSONSchema
import JSON3
import REPL
Expand Down
31 changes: 22 additions & 9 deletions src/llm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,9 @@ abstract type OpenAILLM <: AbstractLLM end

"""
GroqLLM
Structure encapsulating the parameters for accessing the Groq LLM API.
- `api_key`: an API key for accessing the Groq API (https://groq.com), read from the environmental variable GROQ_API_KEY.
- `model_id`: a string identifier for the model to query. See https://console.groq.com/docs/models for the list of available models.
- `url`: URL for chat completions. Defaults to "https://api.groq.com/openai/v1/chat/completions".
Expand All @@ -16,7 +18,7 @@ struct GroqLLM <: OpenAILLM
model_id::String
url::String

function GroqLLM(model_id::String = "llama3-70b-8192", url = GROQ_URL)
function GroqLLM(model_id::String = "llama-3.1-70b-versatile", url = GROQ_URL)
api_key = get(ENV, "GROQ_API_KEY", "")
if isempty(api_key)
error("Environment variable GROQ_API_KEY is not set")
Expand All @@ -27,17 +29,19 @@ end

"""
Google LLM
Structure encapsulating the parameters for accessing the Google LLM API.
- `api_key`: an API key for accessing the Google Gemini API (https://ai.google.dev/gemini-api/docs/), read from the environmental variable GOOGLE_API_KEY.
- `model_id`: a string identifier for the model to query. See https://ai.google.dev/gemini-api/docs/models/gemini for the list of available models.
- `url`: URL for chat completions. Defaults to ""https://generativelanguage.googleapis.com/v1beta/models/{{model_id}}".
- `api_key`: an API key for accessing the Google Gemini API (`https://ai.google.dev/gemini-api/docs/`), read from the environmental variable `GOOGLE_API_KEY`.
- `model_id`: a string identifier for the model to query. See `https://ai.google.dev/gemini-api/docs/models/gemini` for the list of available models.
- `url`: URL for chat completions. Defaults to `https://generativelanguage.googleapis.com/v1beta/models/{{model_id}}`.
"""
struct GoogleLLM <: AbstractLLM
api_key::String
model_id::String
url::String

function GoogleLLM(model_id::String = "gemini-1.5-flash")
function GoogleLLM(model_id::String = "gemini-1.5-flash-latest")
api_key = get(ENV, "GOOGLE_API_KEY", "")
if isempty(api_key)
error("Environment variable GOOGLE_API_KEY is not set")
Expand All @@ -48,12 +52,14 @@ end

"""
LlamaCppLLM
Structure encapsulating the parameters for accessing the llama.cpp server API.
- `api_key`: an optional API key for accessing the server
- `model_id`: a string identifier for the model to query. Unused, kept for API compatibility.
- `url`: the URL of the llama.cpp server OpenAI API endpoint (e.g., http://localhost:8080)
NOTE: we do not apply the appropriate chat templates to the prompt.
This must be handled either in an external code path or by the server.
NOTE: we do not apply the appropriate chat templates to the prompt. This must be handled either in an external code path or by the server.
"""
struct LlamaCppLLM <: OpenAILLM
api_key::String
Expand All @@ -68,6 +74,7 @@ end

"""
get_completion(llm::OpenAILLM, prompt::Prompt)
Returns a completion for the given prompt using an OpenAI API compatible LLM
"""
function get_completion(llm::OpenAILLM, prompt::Prompt)
Expand All @@ -89,6 +96,7 @@ end

"""
get_completion(llm::GoogleLLM, prompt::Prompt)
Returns a completion for the given prompt using the Google Gemini LLM API.
"""
function get_completion(llm::GoogleLLM, prompt::Prompt)
Expand All @@ -110,6 +118,7 @@ end

"""
stream_completion(llm::OpenAILLM, prompt::Prompt)
Returns a completion for the given prompt using an OpenAI API compatible model.
The completion is streamed to the terminal as it is generated.
"""
Expand Down Expand Up @@ -166,6 +175,7 @@ end

"""
stream_completion(llm::GoogleLLM, prompt::Prompt)
Returns a completion for the given prompt using the Google Gemini LLM API.
The completion is streamed to the terminal as it is generated.
"""
Expand All @@ -192,6 +202,7 @@ function stream_completion(llm::GoogleLLM, prompt::Prompt)
chunk = String(readavailable(io))
for line in eachmatch(r"(?<=data: ).*", chunk)
if isnothing(line)
print("\n")
continue
end
message = JSON3.read(line.match)
Expand All @@ -206,6 +217,7 @@ end

"""
stream_completion(llm::AbstractLLM, prompt::AbstractPrompt)
Returns a completion for a `prompt` using the `llm` model API.
The completion is streamed to the terminal as it is generated.
"""
Expand All @@ -216,8 +228,9 @@ end

"""
get_completion(llm::AbstractLLM, prompt::AbstractPrompt)
Returns a completion for a `prompt` using the `llm` model API.
"""
function get_completion(llm::AbstractLLM, prompt::AbstractPrompt)
error("Not implemented for this LLM and/or prompt type.")
function get_completion(::AbstractLLM, ::AbstractPrompt)
return error("Not implemented for this LLM and/or prompt type.")
end
5 changes: 4 additions & 1 deletion src/parsing.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
"""
parse_code(s::String)
Parse the code blocks in the input string `s` delimited by triple backticks and an optional language annotation.
Returns a dictionary keyed by language. Code blocks from the same language are concatenated.
"""
Expand Down Expand Up @@ -32,7 +33,8 @@ end

"""
check_syntax_errors(s::String)
Parses the string `s` as Julia code. In the case of syntax errors, it returns the error
Parses the string `s` as Julia code. In the case of syntax errors, it returns the error
message of the parser as a string. Otherwise, it returns an empty string.
"""
function check_syntax_errors(s::String)
Expand All @@ -47,6 +49,7 @@ end

"""
edit_in_vim(s::String)
Edits the input string `s` in a temporary file using the Vim editor.
Returns the modified string after the editor is closed.
"""
Expand Down
1 change: 1 addition & 0 deletions src/prompt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ abstract type AbstractPrompt end

"""
Prompt
Simple data structure encapsulating a system prompt and a user prompt for LLM generation.
## Fields
Expand Down
10 changes: 8 additions & 2 deletions src/template.jl
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@ struct MetadataMessage <: AbstractMessage
end

"""
SystemMessage
Represents the prompt template of a system message.
The template can optionally contain string placeholders enclosed in double curly braces, e.g., `{{variable}}`.
Placeholders must be replaced with actual values when generating prompts.
Expand All @@ -33,6 +35,8 @@ struct SystemMessage <: AbstractMessage
end

"""
UserMessage
Represents the prompt template of a user message.
The template can optionally contain string placeholders enclosed in double curly braces, e.g., `{{variable}}`.
Placeholders must be replaced with actual values when generating prompts.
Expand All @@ -47,6 +51,8 @@ struct UserMessage <: AbstractMessage
end

"""
PromptTemplate
Represents a complete prompt template, comprising metadata, system, and user messages.
# Fields
Expand All @@ -63,7 +69,7 @@ end
"""
read_template(data_path::String)
Reads a prompt template from a JSON file specified by `data_path`.
Reads a prompt template from a JSON file specified by `data_path`.
The function parses the JSON data and constructs a `PromptTemplate` object containing metadata, system, and user messages.
TODO: validate the JSON data against a schema to ensure it is valid before parsing.
Expand Down Expand Up @@ -165,4 +171,4 @@ function format_template(template::PromptTemplate; kwargs...)
end

return Prompt(system, user)
end
end
32 changes: 22 additions & 10 deletions src/translate.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,8 @@ const MAX_RETRIES::Int = 3

"""
extract_structure(model <: AbstractLLM, description <: AbstractString)
Extracts the parameters, decision variables and constraints of an optimization problem
Extracts the parameters, decision variables and constraints of an optimization problem
given a natural-language `description`.
Returns a Markdown-formatted text containing the above information.
"""
Expand All @@ -22,6 +23,7 @@ function extract_structure(
if interactive
options = [
"Accept the response",
"Copy to clipboard",
"Edit the response",
"Try again with a different prompt",
"Try again with the same prompt",
Expand All @@ -33,13 +35,16 @@ function extract_structure(
if choice == 1
break
elseif choice == 2
clipboard(response)
println("Response copied to the system's clipboard!")
elseif choice == 3
response = edit_in_editor(response)
println(response)
elseif choice == 3
elseif choice == 4
description = edit_in_editor(description)
prompt = format_template(prompt_template; description, constraints)
response = stream_completion(model, prompt)
elseif choice == 4
elseif choice == 5
response = stream_completion(model, prompt)
elseif choice == -1
InterruptException()
Expand All @@ -51,8 +56,9 @@ end

"""
jumpify_model(model::AbstractLLM, description::AbstractString, examples::AbstractString)
Translates the natural language `description` of an optimization problem into a JuMP constraints
programming model to be solved with CBL by querying the Large Language Model `model`.
programming model to be solved with CBL by querying the Large Language Model `model`.
The `examples` are snippets from `ConstraintModels.jl` used as in-context examples to the LLM.
To work optimally, the model expects the `description` to be a structured Markdown-formatted
description as the ones generated by `extract_structure`.
Expand All @@ -77,6 +83,7 @@ function jumpify_model(

options = [
"Accept the response",
"Copy to clipboard",
"Edit the response",
"Try again with a different prompt",
"Try again with the same prompt",
Expand All @@ -85,21 +92,24 @@ function jumpify_model(
@warn "The generated Julia code has one or more syntax errors!"
push!(options, "Fix syntax errors")
end
menu = RadioMenu(options; pagesize = 5)
menu = RadioMenu(options; pagesize = 6)

choice = request("What do you want to do?", menu)
if choice == 1
break
elseif choice == 2
clipboard(parse_code(response)["julia"])
println("Response copied to the system's clipboard!")
elseif choice == 3
response = edit_in_editor(response)
println(response)
elseif choice == 3
elseif choice == 4
description = edit_in_editor(description)
prompt = format_template(template; description, examples)
response = stream_completion(model, prompt)
elseif choice == 4
response = stream_completion(model, prompt)
elseif choice == 5
response = stream_completion(model, prompt)
elseif choice == 6
response = fix_syntax_errors(model, code, error_message)
elseif choice == -1
InterruptException()
Expand All @@ -126,6 +136,7 @@ end

"""
fix_syntax_errors(model::AbstractLLM, code::AbstractString, error::AbstractString)
Fixes syntax errors in the `code` by querying the Large Language Model `model`, based on
an `error` produced by the Julia parser.
Returns Markdown-formatted text containing the corrected code in a Julia code block.
Expand All @@ -141,9 +152,10 @@ end

"""
translate(model::AbstractLLM, description::AbstractString; interactive::Bool = false)
Translate the natural-language `description` of an optimization problem into
Translate the natural-language `description` of an optimization problem into
a Constraint Programming model by querying the Large Language Model `model`.
If `interactive`, the user will be prompted via the command line to inspect the
If `interactive`, the user will be prompted via the command line to inspect the
intermediate outputs of the LLM, and possibly modify them.
"""
function translate(
Expand Down
3 changes: 2 additions & 1 deletion src/utils.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
"""
get_package_path()
Returns the absolute path of the root directory of `ConstraintsTranslator.jl`.
"""
function get_package_path()
Expand All @@ -8,4 +9,4 @@ function get_package_path()
error("The path of the package could not be found. This should never happen!")
end
return package_path
end
end
2 changes: 1 addition & 1 deletion templates/ExtractStructure.json
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
"_type": "metadatamessage"
},
{
"content": "You are an AI assistant specialized in modeling Constraint Programming (CP) problems. You have extensive knowledge of the XCSP3 Constraints and of the most used modeling patterns in Constraint Programming.\nYour task is to examine a given problem description and extract key structural information. Provide your analysis in the following format:\n\n1. Problem Description:\n- Summarize the problem statement and all of its specifications.\n\n2. Input data. Describe the format of the input data of the optimization problem. If no format is specified by the user, make sensible assumptions about one or multiple .csv files representing the problem inputs, and very concisely describe their headers.\n3. Parameter Sets:\n- Identify sets of known quantities given in the problem description. These are fixed inputs to the problem, not determined by the optimization process.\n- For each set of parameters:\n* Provide a descriptive name for the set.\n\n*Define a symbolic notation for the set using subscripts (e.g., a_ijk), specifying the meaning and the range of each index.\n\n3. Decision Variables:\n- Identify the key sets of decisions that need to be made. For each set of decision variables:\n* Provide a descriptive name for the set.\n* Specify the domain (possible values) for elements in this set, which can be either binary, integer or continuous.\n*Define a notation for the set using subscripts (e.g., x_ijk), specifying the meaning and the range of each index.\n\n4. Problem Type: determine whether the problem is a satisfaction or an optimization problem. If it is an optimization problem, provide: - a description of the objective function; - a symbolic Expression, consistently with the notation already defined. Otherwise, if the problem is a satisfaction problem, concisely state this fact.\n\n5. Constraints. Express the problem's constraint using user-provided Core Constraints. You must prefer using CP-oriented global constraints when possible. For each constraint:\n* Write a short description\n*Write the name (only the name) of Core Constraint(s) enforcing the constraint.\n*Write the scope of the constraint, that is, the indexes of the variables appearing in the constraint.\n\nList of core constraints:\n{{constraints}}\n\nIMPORTANT: - Prioritize Constraint Programming formulations over MIP formulations.\n-You must use as few variables and constraints as possible: you must avoid useless or redundant constraints.\n-You must not refer to constraints outside the Core Constraints list.\n-You must make sure that the Core Constraints are used with the appropriate arguments.\n-You must output the requested information only.",
"content": "You are an AI assistant specialized in modeling Constraint Programming (CP) problems. You have extensive knowledge of the XCSP3 Constraints and of the most used modeling patterns in Constraint Programming.\nYour task is to examine a given problem description and extract key structural information. Provide your analysis in a MarkDown document containing the following sections:\n\n# 1. Problem Description\n- Summarize the problem statement and all of its specifications.\n\n# 2. Input data\n Describe the format of the input data of the optimization problem. Use MarkDown tables where appropriate. If no format is specified by the user, make sensible assumptions about one or multiple .csv files representing the problem inputs, and very concisely describe their headers.\n\n# 3. Parameter Sets\n- Identify sets of known quantities given in the problem description. These are fixed inputs to the problem, not determined by the optimization process.\n- For each set of parameters:\n* Provide a descriptive name for the set.\n\n*Define a mathematical notation for the set in LaTeX (e.g., $a_{ijk}$), specifying the meaning and the range of each index\n\n# 4. Decision Variables\n- Identify the key sets of decisions that need to be made. For each set of decision variables:\n* Provide a descriptive name for the set.\n* Specify the domain (possible values) for elements in this set, which can be either binary, integer or continuous.\n*Define a mathematical notation for the set using LaTeX (e.g., $x_{ijk}$)\n\n# 5. Problem Type\nDetermine whether the problem is a satisfaction or an optimization problem. If it is an optimization problem, provide:\n- A description of the objective function\n- A mathematical expression using LaTeX, consistently with the LaTeX notation already defined. Otherwise, if the problem is a satisfaction problem, concisely state this fact.\n\n6. Constraints\nExpress the problem's constraint using user-provided Core Constraints. You must prefer using CP-oriented global constraints when possible. For each constraint:\n* Write a short description\n*Write the name (only the name) of Core Constraint(s) enforcing the constraint.\n*Write the scope of the constraint, that is, the indexes of the variables appearing in the constraint.\n\nList of core constraints:\n{{constraints}}\n\nIMPORTANT:\n- Prioritize Constraint Programming formulations over MIP formulations.\n-You must use as few variables and constraints as possible: you must avoid useless or redundant constraints.\n-You must not refer to constraints outside the Core Constraints list.\n-You must make sure that the Core Constraints are used with the appropriate arguments.\n-You must output the requested information only.",
"variables": [
"constraints"
],
Expand Down

0 comments on commit 955b9ad

Please sign in to comment.