Skip to content

Commit

Permalink
Improve docs for division
Browse files Browse the repository at this point in the history
  • Loading branch information
blegat committed May 2, 2024
1 parent b6da6a1 commit d56925e
Show file tree
Hide file tree
Showing 2 changed files with 81 additions and 3 deletions.
35 changes: 32 additions & 3 deletions docs/src/division.md
Original file line number Diff line number Diff line change
@@ -1,18 +1,47 @@
# Division

The `gcd` and `lcm` functions of `Base` have been implemented for monomials, you have for example `gcd(x^2*y^7*z^3, x^4*y^5*z^2)` returning `x^2*y^5*z^2` and `lcm(x^2*y^7*z^3, x^4*y^5*z^2)` returning `x^4*y^7*z^3`.

Given two polynomials, ``p`` and ``d``, there are unique ``r`` and ``q`` such that ``p = q d + r`` and the leading term of ``d`` does not divide the leading term of ``r``.
You can obtain ``q`` using the `div` function and ``r`` using the `rem` function.
The `divrem` function returns ``(q, r)``.

Given a polynomial ``p`` and divisors ``d_1, \ldots, d_n``, one can find ``r`` and ``q_1, \ldots, q_n`` such that ``p = q_1 d_1 + \cdots + q_n d_n + r`` and none of the leading terms of ``q_1, \ldots, q_n`` divide the leading term of ``r``.
You can obtain the vector ``[q_1, \ldots, q_n]`` using `div(p, d)` where ``d = [d_1, \ldots, d_n]`` and ``r`` using the `rem` function with the same arguments.
The `divrem` function returns ``(q, r)``.

```@docs
divrem
div
rem
divides
div_multiple
```

Note that the coefficients of the polynomials need to be a field for `div`,
`rem` and `divrem` to work.
Alternatively, [`pseudo_rem`](@ref) or [`pseudo_divrem`](@ref) can be used
instead as they do not require the coefficient type to be a field.
```@docs
pseudo_rem
pseudo_divrem
rem_or_pseudo_rem
```

## Greatest Common Divisor (GCD)

The Greatest Common Divisor (GCD) and Least Common Multiple (LCM) can be
obtained for integers respectively with the `gcd` and `lcm` functions.
The same functions can be used with monomials and polynomials:
```@docs
gcd
AbstractUnivariateGCDAlgorithm
GeneralizedEuclideanAlgorithm
SubresultantAlgorithm
```
Internal functions of the `gcd` algorithm:
```@docs
isolate_variable
primitive_univariate_gcd!
univariate_gcd
content
primitive_part
primitive_part_content
```
49 changes: 49 additions & 0 deletions src/division.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,9 +26,36 @@ function divides(t1::AbstractTermLike, t2::AbstractTermLike)
end
divides(t1::AbstractVariable, t2::AbstractVariable) = t1 == t2

"""
gcd(m1::AbstractMonomialLike, m2::AbstractMonomialLike)
Return the largest monomial `m` such that both `divides(m, m1)`
and `divides(m, m2)` are `true`.
```@example
julia> @polyvar x y z;
julia> gcd(x^2*y^7*z^3, x^4*y^5*z^2)
x²y⁵z²
```
"""
function Base.gcd(m1::AbstractMonomialLike, m2::AbstractMonomialLike)
return map_exponents(min, m1, m2)
end

"""
lcm(m1::AbstractMonomialLike, m2::AbstractMonomialLike)
Return the smallest monomial `m` such that both `divides(m1, m)`
and `divides(m2, m)` are `true`.
```@example
julia> @polyvar x y z;
julia> lcm(x^2*y^7*z^3, x^4*y^5*z^2)
x^4*y^7*z^3
```
"""
function Base.lcm(m1::AbstractMonomialLike, m2::AbstractMonomialLike)
return map_exponents(max, m1, m2)
end
Expand Down Expand Up @@ -152,6 +179,26 @@ function Base.rem(f::_APL, g::Union{_APL,AbstractVector{<:_APL}}; kwargs...)
return divrem(f, g; kwargs...)[2]
end

"""
pseudo_divrem(f::_APL{S}, g::_APL{T}, algo) where {S,T}
Return the pseudo divisor and remainder of `f` modulo `g` as defined in [Knu14, Algorithm R, p. 425].
When the coefficient type is not a field, it is not always possible to carry a
division. For instance, the division of `f = 3x + 1` by `g = 2x + 1` cannot be done over
integers. On the other hand, one can write `2f = 3g - 1`.
In general, the *pseudo* division of `f` by `g` is:
```math
l f(x) = q(x) g(x) + r(x)
```
where `l` is a power of the leading coefficient of `g` some constant.
See also [`pseudo_rem`](@ref).
[Knu14] Knuth, D.E., 2014.
*Art of computer programming, volume 2: Seminumerical algorithms.*
Addison-Wesley Professional. Third edition.
"""
function pseudo_divrem(f::_APL{S}, g::_APL{T}, algo) where {S,T}
return _pseudo_divrem(
algebraic_structure(MA.promote_operation(-, S, T)),
Expand Down Expand Up @@ -189,6 +236,8 @@ end
Return the pseudo remainder of `f` modulo `g` as defined in [Knu14, Algorithm R, p. 425].
See [`pseudo_divrem`](@ref) for more details.
[Knu14] Knuth, D.E., 2014.
*Art of computer programming, volume 2: Seminumerical algorithms.*
Addison-Wesley Professional. Third edition.
Expand Down

0 comments on commit d56925e

Please sign in to comment.