-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Trigonometric basis * Fix format * Add tests
- Loading branch information
Showing
5 changed files
with
143 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -38,4 +38,5 @@ AbstractGegenbauer | |
Legendre | ||
ChebyshevFirstKind | ||
ChebyshevSecondKind | ||
Trigonometric | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
""" | ||
struct Trigonometric <: AbstractMonomialIndexed end | ||
Univariate trigonometric basis is | ||
``` | ||
a0 + a1 cos(ωt) + a2 sin(ωt) + a3 cos(2ωt) + a4 sin(2ωt) | ||
``` | ||
""" | ||
struct Trigonometric <: AbstractMultipleOrthogonal end | ||
|
||
_cos_id(d) = iszero(d) ? 0 : 2d - 1 | ||
_sin_id(d) = 2d | ||
_is_cos(d) = isodd(d) | ||
_is_sin(d) = d > 0 && iseven(d) | ||
_id(d) = div(d + 1, 2) | ||
|
||
# https://en.wikipedia.org/wiki/Chebyshev_polynomials#Properties | ||
# Using | ||
# sin(a + b) = sin(a) cos(b) + cos(a) sin(b) | ||
# sin(a - b) = sin(a) cos(b) - cos(a) sin(b) | ||
# If a > b | ||
# sin(a) cos(b) = sin(a + b) + sin(a - b) | ||
# sin(a) cos(b) = sin(a + b) + sin(a - b) | ||
function univariate_mul!(::Mul{Trigonometric}, terms, var, a, b) | ||
@assert !iszero(a) | ||
@assert !iszero(b) | ||
I = eachindex(terms) | ||
da = _id(a) | ||
db = _id(b) | ||
for i in I | ||
if _is_cos(a) == _is_cos(b) | ||
# Chebyshev first kind | ||
mono = MP.monomial(terms[i]) * var^(_cos_id(da + db)) | ||
terms[i] = MA.mul!!(terms[i], var^_cos_id(abs(da - db))) | ||
terms[i] = MA.operate!!(/, terms[i], 2) | ||
α = MA.copy_if_mutable(MP.coefficient(terms[i])) | ||
push!(terms, MP.term(α, mono)) | ||
# cos(a + b) = cos(a) cos(b) - sin(a) sin(b) | ||
# cos(a - b) = cos(a) cos(b) + sin(a) sin(b) | ||
# cos(a - b) - cos(a + b) | ||
if _is_sin(a) | ||
terms[end] = MA.operate!!(*, terms[end], -1) | ||
end | ||
else | ||
if _is_cos(a) | ||
da, db = db, da | ||
end | ||
# sin(da) * cos(db) | ||
if da == db | ||
# sin(da) * cos(da) = sin(2da) / 2 | ||
terms[i] = MA.mul!!(terms[i], var^_cos_id(da + db)) | ||
terms[i] = MA.operate!!(/, terms[i], 2) | ||
else | ||
# Using | ||
# sin(a + b) = sin(a) cos(b) + cos(a) sin(b) | ||
# sin(a - b) = sin(a) cos(b) - cos(a) sin(b) | ||
# If a > b | ||
# sin(a) cos(b) = (sin(a + b) + sin(a - b)) / 2 | ||
# If a < b | ||
# sin(a) cos(b) = (sin(b + a) - sin(b - a)) / 2 | ||
mono = MP.monomial(terms[i]) * var^(_sin_id(da + db)) | ||
terms[i] = MA.mul!!(terms[i], var^_sin_id(abs(da - db))) | ||
terms[i] = MA.operate!!(/, terms[i], 2) | ||
α = MA.copy_if_mutable(MP.coefficient(terms[i])) | ||
push!(terms, MP.term(α, mono)) | ||
if da < db | ||
terms[i] = MA.operate!!(*, terms[i], -1) | ||
end | ||
end | ||
end | ||
end | ||
return | ||
end | ||
|
||
function degree_one_univariate_polynomial(::Type{Trigonometric}, variable) | ||
MA.@rewrite(variable + 0) | ||
end | ||
|
||
function recurrence_eval( | ||
::Type{Trigonometric}, | ||
previous::AbstractVector, | ||
value, | ||
degree, | ||
) | ||
d = _id(degree) | ||
if _is_cos(degree) | ||
# Chebyshev first order | ||
return 2 * value * previous[_cos_id(d - 1)+1] - | ||
previous[_cos_id(d - 2)+1] | ||
else | ||
return sqrt(1 - previous[degree]^2) | ||
end | ||
end | ||
|
||
function _promote_coef(::Type{T}, ::Type{Trigonometric}) where {T} | ||
return _promote_div(T) | ||
end | ||
|
||
# FIXME The cos part is, like Chebysev, maybe the sin part too ? We should do better here, this is just a stopgap | ||
even_odd_separated(::Type{Trigonometric}) = false |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
using Test | ||
using MultivariateBases | ||
using DynamicPolynomials | ||
|
||
@testset "StarAlgebras" begin | ||
@polyvar x | ||
a = MB.Polynomial{MB.Trigonometric}(x) | ||
b = a * a | ||
@test b.coeffs == MB.sparse_coefficients(1 // 2 + 1 // 2 * x^3) | ||
c = b * b | ||
@test c.coeffs == | ||
MB.sparse_coefficients(3 // 8 + 1 // 2 * x^3 + 1 // 8 * x^7) | ||
@test a * MB.Polynomial{MB.Trigonometric}(constant_monomial(typeof(x))) == | ||
a * MB.Polynomial{MB.Trigonometric}(x^0) | ||
end |