Skip to content

Jiahao-rao/AMS_Former

Repository files navigation

AMS_Former

This is the official code for AMS_Former.

Installation

python==3.8

einops==0.3.0

cryptography==43.0.0

torch==2.3.0

numpy==1.24.4

pandas==2.0.3

matploylib==3.7.5

opencv-python==4.4.0.46

timm==1.0.3

Download weights

Download weights : https://pan.baidu.com/s/1g5qGGKq3DLQFX1d-NoUPUQ (password:p1iq). Please extract it and place it in the main directory.

Download datasets

Download datasets:https://pan.baidu.com/s/1hB4KJF8zs20SLdgBDV9-vw (password: 9y3t). Please extract it and place it in the main directory.

Test

You can run test.py to generate test results.

python test.py --ref_dir dataset/rs_rgb_map/rgb --sen_dir dataset/rs_rgb_map/map --json_path dataset/rs_rgb_map/trans_info.json --result_dir results/rs_rgb_map --mode mode2 --device cuda

You can run the following commands to generate other results.

python test.py --ref_dir dataset/rs_rgb_nir/rgb --sen_dir dataset/rs_rgb_nir/nir --json_path dataset/rs_rgb_nir/trans_info.json --result_dir results/rs_rgb_nir --mode mode1 --device cuda

python test.py --ref_dir dataset/cv_rgb_inf/rgb --sen_dir dataset/cv_rgb_inf/inf --json_path dataset/cv_rgb_inf/trans_info.json --result_dir results/cv_rgb_inf --mode mode3 --device cuda

python test.py --ref_dir dataset/cv_rgb_nir/rgb --sen_dir dataset/cv_rgb_nir/nir --json_path dataset/cv_rgb_nir/trans_info.json --result_dir results/cv_rgb_nir --mode mode4 --device cuda

Test on your own images!

The following command is provided to allow you to test your own dataset!

python test_singlepair.py -ref_path your_ref_image_path -sen_path your_sen_iamge_path -result_path match_result_path --mode mode1 --device cuda

Choices of mode: mode1, mode2, mode3, mode4.

Good luck!

About

This is the official code for AMS_Former.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages