-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'noetic-devel' of https://github.com/JdeRobot/BehaviorMe…
…trics into issue-609
- Loading branch information
Showing
67 changed files
with
3,073 additions
and
253 deletions.
There are no files selected for viewing
242 changes: 242 additions & 0 deletions
242
behavior_metrics/brains/CARLA/brain_carla_subjective_vision_deep_learning_previous_v.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,242 @@ | ||
#!/usr/bin/python | ||
# -*- coding: utf-8 -*- | ||
import csv | ||
import cv2 | ||
import math | ||
import numpy as np | ||
import threading | ||
import time | ||
import carla | ||
from PIL import Image | ||
from os import path | ||
from albumentations import ( | ||
Compose, Normalize, RandomRain, RandomBrightness, RandomShadow, RandomSnow, RandomFog, RandomSunFlare | ||
) | ||
from utils.constants import PRETRAINED_MODELS_DIR, ROOT_PATH | ||
from utils.logger import logger | ||
from traceback import print_exc | ||
|
||
PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'carla_tf_models/' | ||
|
||
from tensorflow.python.framework.errors_impl import NotFoundError | ||
from tensorflow.python.framework.errors_impl import UnimplementedError | ||
import tensorflow as tf | ||
|
||
import os | ||
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | ||
|
||
gpus = tf.config.experimental.list_physical_devices('GPU') | ||
for gpu in gpus: | ||
tf.config.experimental.set_memory_growth(gpu, True) | ||
|
||
|
||
class Brain: | ||
|
||
def __init__(self, sensors, actuators, handler, model, config=None): | ||
self.camera_0 = sensors.get_camera('camera_0') | ||
self.camera_1 = sensors.get_camera('camera_1') | ||
self.camera_2 = sensors.get_camera('camera_2') | ||
self.camera_3 = sensors.get_camera('camera_3') | ||
|
||
self.cameras_first_images = [] | ||
|
||
self.pose = sensors.get_pose3d('pose3d_0') | ||
|
||
self.bird_eye_view = sensors.get_bird_eye_view('bird_eye_view_0') | ||
|
||
self.motors = actuators.get_motor('motors_0') | ||
self.handler = handler | ||
self.config = config | ||
self.inference_times = [] | ||
self.gpu_inference = True if tf.test.gpu_device_name() else False | ||
|
||
self.threshold_image = np.zeros((640, 360, 3), np.uint8) | ||
self.color_image = np.zeros((640, 360, 3), np.uint8) | ||
''' | ||
self.lock = threading.Lock() | ||
self.threshold_image_lock = threading.Lock() | ||
self.color_image_lock = threading.Lock() | ||
''' | ||
self.cont = 0 | ||
self.iteration = 0 | ||
|
||
# self.previous_timestamp = 0 | ||
# self.previous_image = 0 | ||
|
||
self.previous_commanded_throttle = None | ||
self.previous_commanded_steer = None | ||
self.previous_commanded_brake = None | ||
self.suddenness_distance = [] | ||
self.suddenness_distance_throttle = [] | ||
self.suddenness_distance_steer = [] | ||
self.suddenness_distance_break_command = [] | ||
|
||
client = carla.Client('localhost', 2000) | ||
client.set_timeout(10.0) # seconds | ||
self.world = client.get_world() | ||
self.world.unload_map_layer(carla.MapLayer.Particles) | ||
|
||
time.sleep(5) | ||
self.vehicle = self.world.get_actors().filter('vehicle.*')[0] | ||
|
||
if model: | ||
if not path.exists(PRETRAINED_MODELS + model): | ||
logger.info("File " + model + " cannot be found in " + PRETRAINED_MODELS) | ||
logger.info("** Load TF model **") | ||
self.net = tf.keras.models.load_model(PRETRAINED_MODELS + model) | ||
logger.info("** Loaded TF model **") | ||
else: | ||
logger.info("** Brain not loaded **") | ||
logger.info("- Models path: " + PRETRAINED_MODELS) | ||
logger.info("- Model: " + str(model)) | ||
|
||
self.previous_speed = 0 | ||
|
||
|
||
def update_frame(self, frame_id, data): | ||
"""Update the information to be shown in one of the GUI's frames. | ||
Arguments: | ||
frame_id {str} -- Id of the frame that will represent the data | ||
data {*} -- Data to be shown in the frame. Depending on the type of frame (rgbimage, laser, pose3d, etc) | ||
""" | ||
if data.shape[0] != data.shape[1]: | ||
if data.shape[0] > data.shape[1]: | ||
difference = data.shape[0] - data.shape[1] | ||
extra_left, extra_right = int(difference/2), int(difference/2) | ||
extra_top, extra_bottom = 0, 0 | ||
else: | ||
difference = data.shape[1] - data.shape[0] | ||
extra_left, extra_right = 0, 0 | ||
extra_top, extra_bottom = int(difference/2), int(difference/2) | ||
|
||
|
||
data = np.pad(data, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) | ||
|
||
self.handler.update_frame(frame_id, data) | ||
|
||
def update_pose(self, pose_data): | ||
self.handler.update_pose3d(pose_data) | ||
|
||
def execute(self): | ||
image = self.camera_0.getImage().data | ||
image_1 = self.camera_1.getImage().data | ||
image_2 = self.camera_2.getImage().data | ||
image_3 = self.camera_3.getImage().data | ||
|
||
cropped = image[230:-1,:] | ||
if self.cont < 20: | ||
self.cont += 1 | ||
|
||
bird_eye_view_1 = self.bird_eye_view.getImage(self.vehicle) | ||
bird_eye_view_1 = cv2.cvtColor(bird_eye_view_1, cv2.COLOR_BGR2RGB) | ||
|
||
if self.cameras_first_images == []: | ||
self.cameras_first_images.append(image) | ||
self.cameras_first_images.append(image_1) | ||
self.cameras_first_images.append(image_2) | ||
self.cameras_first_images.append(image_3) | ||
self.cameras_first_images.append(bird_eye_view_1) | ||
|
||
self.cameras_last_images = [ | ||
image, | ||
image_1, | ||
image_2, | ||
image_3, | ||
bird_eye_view_1 | ||
] | ||
|
||
self.update_frame('frame_1', image) | ||
self.update_frame('frame_2', image_2) | ||
self.update_frame('frame_3', image_3) | ||
|
||
self.update_frame('frame_0', bird_eye_view_1) | ||
|
||
self.update_pose(self.pose.getPose3d()) | ||
|
||
image_shape=(200, 66) | ||
img = cv2.resize(cropped, image_shape)/255.0 | ||
|
||
"""AUGMENTATIONS_TEST = Compose([ | ||
Normalize() | ||
]) | ||
image = AUGMENTATIONS_TEST(image=img_base) | ||
img = image["image"]""" | ||
|
||
#velocity_dim = np.full((150, 50), 0.5) | ||
velocity_normalize = np.interp(self.previous_speed, (0, 100), (0, 1)) | ||
velocity_dim = np.full((66, 200), velocity_normalize) | ||
new_img_vel = np.dstack((img, velocity_dim)) | ||
img = new_img_vel | ||
|
||
img = np.expand_dims(img, axis=0) | ||
start_time = time.time() | ||
try: | ||
prediction = self.net.predict(img) | ||
self.inference_times.append(time.time() - start_time) | ||
throttle_brake_val = np.interp(prediction[0][0], (0, 1), (-1, 1)) | ||
steer = np.interp(prediction[0][1], (0, 1), (-1, 1)) | ||
if throttle_brake_val >= 0: # throttle | ||
throttle = throttle_brake_val | ||
break_command = 0 | ||
else: # brake | ||
throttle = 0 | ||
break_command = -1*throttle_brake_val | ||
|
||
speed = self.vehicle.get_velocity() | ||
vehicle_speed = 3.6 * math.sqrt(speed.x**2 + speed.y**2 + speed.z**2) | ||
self.previous_speed = vehicle_speed | ||
|
||
if self.cont < 20: | ||
self.motors.sendThrottle(1.0) | ||
self.motors.sendSteer(0.0) | ||
self.motors.sendBrake(0) | ||
else: | ||
self.motors.sendThrottle(throttle) | ||
self.motors.sendSteer(steer) | ||
self.motors.sendBrake(break_command) | ||
|
||
if self.previous_commanded_throttle != None: | ||
a = np.array((throttle, steer, break_command)) | ||
b = np.array((self.previous_commanded_throttle, self.previous_commanded_steer, self.previous_commanded_brake)) | ||
distance = np.linalg.norm(a - b) | ||
self.suddenness_distance.append(distance) | ||
|
||
a = np.array((throttle)) | ||
b = np.array((self.previous_commanded_throttle)) | ||
distance_throttle = np.linalg.norm(a - b) | ||
self.suddenness_distance_throttle.append(distance_throttle) | ||
|
||
a = np.array((steer)) | ||
b = np.array((self.previous_commanded_steer)) | ||
distance_steer = np.linalg.norm(a - b) | ||
self.suddenness_distance_steer.append(distance_steer) | ||
|
||
a = np.array((break_command)) | ||
b = np.array((self.previous_commanded_brake)) | ||
distance_break_command = np.linalg.norm(a - b) | ||
self.suddenness_distance_break_command.append(distance_break_command) | ||
|
||
self.previous_commanded_throttle = throttle | ||
self.previous_commanded_steer = steer | ||
self.previous_commanded_brake = break_command | ||
except NotFoundError as ex: | ||
logger.info('Error inside brain: NotFoundError!') | ||
logger.warning(type(ex).__name__) | ||
print_exc() | ||
raise Exception(ex) | ||
except UnimplementedError as ex: | ||
logger.info('Error inside brain: UnimplementedError!') | ||
logger.warning(type(ex).__name__) | ||
print_exc() | ||
raise Exception(ex) | ||
except Exception as ex: | ||
logger.info('Error inside brain: Exception!') | ||
logger.warning(type(ex).__name__) | ||
print_exc() | ||
raise Exception(ex) | ||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.