Skip to content

Commit

Permalink
Merge pull request #249 from HopkinsIDD/performance/GH-248-rolling_me…
Browse files Browse the repository at this point in the history
…an_pad-speed

`rolling_mean_pad` Performance Improvements
  • Loading branch information
jcblemai authored Jul 12, 2024
2 parents 35b0e9e + dfc7695 commit 4e8522e
Showing 1 changed file with 14 additions and 14 deletions.
28 changes: 14 additions & 14 deletions flepimop/gempyor_pkg/src/gempyor/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@
import numpy.typing as npt
import pandas as pd
import pyarrow as pa
import scipy.ndimage
import scipy.stats
import sympy.parsing.sympy_parser

Expand Down Expand Up @@ -430,20 +431,19 @@ def rolling_mean_pad(
[20.2, 21.2, 22.2, 23.2],
[22.6, 23.6, 24.6, 25.6]])
"""
padding_size = (window - 1) // 2
padded_data = np.pad(data, ((padding_size, padding_size), (0, 0)), mode="edge")

# Allocate space for the result
result = np.zeros_like(data)

# Perform convolution along the days axis (axis 0) using a loop
for i in range(data.shape[0]):
# Extract the current day's data from the padded array
window_data = padded_data[i : i + window, :]
# Calculate the rolling mean for this day's data
result[i, :] = np.mean(window_data, axis=0)

return result
weights = (1. / window) * np.ones(window)
output = scipy.ndimage.convolve1d(data, weights, axis=0, mode="nearest")
if window % 2 == 0:
rows, cols = data.shape
i = rows - 1
output[i, :] = 0.
window -= 1
weight = 1. / window
for l in range(-((window - 1) // 2), 1 + (window // 2)):
i_star = min(max(i + l, 0), i)
for j in range(cols):
output[i, j] += weight * data[i_star, j]
return output


def print_disk_diagnosis():
Expand Down

0 comments on commit 4e8522e

Please sign in to comment.