-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add ArcFace verifier #8
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
|
||
from yoloface import face_detector | ||
from util.distance import findEuclideanDistance | ||
from itertools import combinations | ||
from util.VideoCapture import VideoCapture | ||
from util.plot import * | ||
import torch | ||
from similarImageFinder_functions import * | ||
from verifier import FaceVerifier, VGGFace, ArcFace | ||
|
||
|
||
class SimilarImageFinder: | ||
def __init__(self, detector, verifier, video_name, video_path, period=30, video_capture=True): | ||
self.video_name = video_name | ||
if video_capture: | ||
# 영상 -> 이미지 | ||
VideoCapture(period, video_name, video_path) | ||
# 같은 프레임의 이미지를 중에서 적어도 2번 이상 사람이 감지된 프레임만 추출해서 data frame 생성 | ||
df = self._make_df_detection_by_detector(detector, video_name) | ||
else: | ||
df = pd.read_parquet(f'./dataset/{video_name}/detection_data/yoloface_data.parquet') | ||
# 유사한 이미지 탐색 | ||
similarity_list = self.find_similarity_images(df, verifier) | ||
print(similarity_list) | ||
# 이미지 출력 | ||
plot_by_cv2(similarity_list, video_name, 30) | ||
|
||
|
||
def _make_df_detection_by_detector(self,detector, video_name): | ||
""" | ||
Face Detection 데이터 프레임을 만드는 함수입니다. | ||
:param: detector ['opencv', 'ssd', 'mtcnn', 'retinaface', 'yoloface] | ||
:return: | ||
""" | ||
if detector == 'yoloface': | ||
try: | ||
torch.tensor(1).cuda() | ||
# de | ||
yolo_detector = face_detector.YoloDetector(target_size=720, gpu=0, min_face=90) | ||
print('gpu 사용') | ||
df_detection = detect_images_by_gpu(yolo_detector, video_name, batch_size=16) | ||
except: | ||
yolo_detector = face_detector.YoloDetector(target_size=720, gpu=-1, min_face=90) | ||
print('cpu 사용, 시간이 오래걸리기 때문에 gpu를 이용하는 것을 권장합니다.') | ||
df_detection = detect_images_by_cpu(yolo_detector, video_name) | ||
else: | ||
print('아직 미구현') | ||
# frame_num 순으로 정렬(시간 순으로 정렬됨) | ||
df_detection = df_detection.sort_values(by='frame_num') | ||
# filter 된 dataframe | ||
df_filtered = filter_df(df_detection) | ||
# 데이터프레임 저장 | ||
df_filtered.to_parquet(f'./dataset/{video_name}/detection_data/yoloface_data.parquet',engine='pyarrow') | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
|
||
return df_filtered | ||
|
||
|
||
def find_similarity_images(self,df_filtered, verifier='VGGFace'): | ||
similarity_list = [] | ||
if verifier == 'VGGFace': # Face Verification 을 위한 VGGFace Model 불러오기 | ||
model = VGGFace.loadModel() | ||
elif verifier == 'ArcFace': | ||
model = ArcFace.loadModel() | ||
|
||
for frame in df_filtered.index.unique(): | ||
df_temp = df_filtered.loc[frame] | ||
# 감지된 사람수 | ||
detect_person_num = df_temp['detect_person_num'].iloc[0] | ||
# 영상 번호 리스트 | ||
video_num_list = list(df_temp['video_num']) | ||
# 선택된 영상 번호 | ||
selected_video = None | ||
# 거리 | ||
dis_min = 100000000 | ||
|
||
for selected_video_nums in list(combinations(video_num_list, 2)): | ||
videonum1, videonum2 = selected_video_nums[0], selected_video_nums[1] | ||
boxes = list(df_temp.loc[(df_temp['video_num'] == videonum1) | (df_temp['video_num'] == videonum2)]['boxes']) | ||
imgs_path = [f'./dataset/{self.video_name}/frame/{frame}/{videonum1}.jpg', | ||
f'./dataset/{self.video_name}/frame/{frame}/{videonum2}.jpg'] | ||
Comment on lines
+79
to
+80
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
|
||
|
||
# 2개의 이미지에서 가장 큰 얼굴 간의 비율, face verification 을 위한 crop face image | ||
area_fraction, crop_face1, crop_face2 = get_max_area_fraction_and_crop_faces(boxes, imgs_path) | ||
|
||
# #Verified Test : 검증 확인 | ||
# verified = FaceVerifier.verify(crop_face1, crop_face2, model)['verified'] | ||
# #check not verified face | ||
# if not verified: plot_crop_face(crop_face1, crop_face2) | ||
# # check verified face | ||
# if verified: plot_crop_face(crop_face1, crop_face2) | ||
|
||
# compare area_fraction and face recognition | ||
if 0.8 < area_fraction < 1.2 and FaceVerifier.verify(crop_face1, crop_face2, model)['verified']: | ||
landmarks = list( | ||
df_temp.loc[(df_temp['video_num'] == videonum1) | (df_temp['video_num'] == videonum2)]['landmarks']) | ||
|
||
dis = findEuclideanDistance(landmarks[0], landmarks[1], detect_person_num) | ||
|
||
if dis < dis_min: | ||
dis_min = dis | ||
selected_video = selected_video_nums | ||
|
||
if selected_video is not None: | ||
similarity_list.append((frame, selected_video, dis_min)) | ||
|
||
similarity_list = sorted(similarity_list, key=lambda x: x[2]) | ||
|
||
return similarity_list | ||
|
||
|
||
if __name__ == '__main__': | ||
video_path = '/content/drive/MyDrive/HAI/HAI_Project/dataset' | ||
# video capture 생략하고 싶으면 False | ||
# SimilarImageFinder('yoloface', 'idle_tomboy3', video_path, period=30, video_capture=True) | ||
SimilarImageFinder('yoloface', 'ArcFace', 'tomboy1', video_path, period=30, video_capture=False) | ||
|
||
if __name__ == '__main__': | ||
video_path = '/content/drive/MyDrive/HAI/HAI_Project/dataset' | ||
# video capture 생략하고 싶으면 False | ||
# SimilarImageFinder('yoloface', 'idle_tomboy3', video_path, period=30, video_capture=True) | ||
SimilarImageFinder('yoloface', 'VGGFace', 'tomboy2', video_path, period=30, video_capture=False) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
같은 형태로 수정하는 것이 좋겠습니다.