-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
8 changed files
with
284 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
from fastapi import FastAPI, HTTPException, File, UploadFile | ||
from pydantic import BaseModel | ||
import os | ||
from lightrag import LightRAG, QueryParam | ||
from lightrag.llm import ollama_embedding, ollama_model_complete | ||
from lightrag.utils import EmbeddingFunc | ||
from typing import Optional | ||
import asyncio | ||
import nest_asyncio | ||
import aiofiles | ||
|
||
# Apply nest_asyncio to solve event loop issues | ||
nest_asyncio.apply() | ||
|
||
DEFAULT_RAG_DIR = "index_default" | ||
app = FastAPI(title="LightRAG API", description="API for RAG operations") | ||
|
||
DEFAULT_INPUT_FILE = "book.txt" | ||
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}") | ||
print(f"INPUT_FILE: {INPUT_FILE}") | ||
|
||
# Configure working directory | ||
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}") | ||
print(f"WORKING_DIR: {WORKING_DIR}") | ||
|
||
|
||
if not os.path.exists(WORKING_DIR): | ||
os.mkdir(WORKING_DIR) | ||
|
||
|
||
rag = LightRAG( | ||
working_dir=WORKING_DIR, | ||
llm_model_func=ollama_model_complete, | ||
llm_model_name="gemma2:9b", | ||
llm_model_max_async=4, | ||
llm_model_max_token_size=8192, | ||
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}}, | ||
embedding_func=EmbeddingFunc( | ||
embedding_dim=768, | ||
max_token_size=8192, | ||
func=lambda texts: ollama_embedding( | ||
texts, embed_model="nomic-embed-text", host="http://localhost:11434" | ||
), | ||
), | ||
) | ||
|
||
|
||
# Data models | ||
class QueryRequest(BaseModel): | ||
query: str | ||
mode: str = "hybrid" | ||
only_need_context: bool = False | ||
|
||
|
||
class InsertRequest(BaseModel): | ||
text: str | ||
|
||
|
||
class Response(BaseModel): | ||
status: str | ||
data: Optional[str] = None | ||
message: Optional[str] = None | ||
|
||
|
||
# API routes | ||
@app.post("/query", response_model=Response) | ||
async def query_endpoint(request: QueryRequest): | ||
try: | ||
loop = asyncio.get_event_loop() | ||
result = await loop.run_in_executor( | ||
None, | ||
lambda: rag.query( | ||
request.query, | ||
param=QueryParam( | ||
mode=request.mode, only_need_context=request.only_need_context | ||
), | ||
), | ||
) | ||
return Response(status="success", data=result) | ||
except Exception as e: | ||
raise HTTPException(status_code=500, detail=str(e)) | ||
|
||
|
||
# insert by text | ||
@app.post("/insert", response_model=Response) | ||
async def insert_endpoint(request: InsertRequest): | ||
try: | ||
loop = asyncio.get_event_loop() | ||
await loop.run_in_executor(None, lambda: rag.insert(request.text)) | ||
return Response(status="success", message="Text inserted successfully") | ||
except Exception as e: | ||
raise HTTPException(status_code=500, detail=str(e)) | ||
|
||
|
||
# insert by file in payload | ||
@app.post("/insert_file", response_model=Response) | ||
async def insert_file(file: UploadFile = File(...)): | ||
try: | ||
file_content = await file.read() | ||
# Read file content | ||
try: | ||
content = file_content.decode("utf-8") | ||
except UnicodeDecodeError: | ||
# If UTF-8 decoding fails, try other encodings | ||
content = file_content.decode("gbk") | ||
# Insert file content | ||
loop = asyncio.get_event_loop() | ||
await loop.run_in_executor(None, lambda: rag.insert(content)) | ||
|
||
return Response( | ||
status="success", | ||
message=f"File content from {file.filename} inserted successfully", | ||
) | ||
except Exception as e: | ||
raise HTTPException(status_code=500, detail=str(e)) | ||
|
||
|
||
# insert by local default file | ||
@app.post("/insert_default_file", response_model=Response) | ||
@app.get("/insert_default_file", response_model=Response) | ||
async def insert_default_file(): | ||
try: | ||
# Read file content from book.txt | ||
async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file: | ||
content = await file.read() | ||
print(f"read input file {INPUT_FILE} successfully") | ||
# Insert file content | ||
loop = asyncio.get_event_loop() | ||
await loop.run_in_executor(None, lambda: rag.insert(content)) | ||
|
||
return Response( | ||
status="success", | ||
message=f"File content from {INPUT_FILE} inserted successfully", | ||
) | ||
except Exception as e: | ||
raise HTTPException(status_code=500, detail=str(e)) | ||
|
||
|
||
@app.get("/health") | ||
async def health_check(): | ||
return {"status": "healthy"} | ||
|
||
|
||
if __name__ == "__main__": | ||
import uvicorn | ||
|
||
uvicorn.run(app, host="0.0.0.0", port=8020) | ||
|
||
# Usage example | ||
# To run the server, use the following command in your terminal: | ||
# python lightrag_api_openai_compatible_demo.py | ||
|
||
# Example requests: | ||
# 1. Query: | ||
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}' | ||
|
||
# 2. Insert text: | ||
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}' | ||
|
||
# 3. Insert file: | ||
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}' | ||
|
||
# 4. Health check: | ||
# curl -X GET "http://127.0.0.1:8020/health" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
import os | ||
import inspect | ||
from lightrag import LightRAG | ||
from lightrag.llm import openai_complete, openai_embedding | ||
from lightrag.utils import EmbeddingFunc | ||
from lightrag.lightrag import always_get_an_event_loop | ||
from lightrag import QueryParam | ||
|
||
# WorkingDir | ||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) | ||
WORKING_DIR = os.path.join(ROOT_DIR, "dickens") | ||
if not os.path.exists(WORKING_DIR): | ||
os.mkdir(WORKING_DIR) | ||
print(f"WorkingDir: {WORKING_DIR}") | ||
|
||
api_key = "empty" | ||
rag = LightRAG( | ||
working_dir=WORKING_DIR, | ||
llm_model_func=openai_complete, | ||
llm_model_name="qwen2.5-14b-instruct@4bit", | ||
llm_model_max_async=4, | ||
llm_model_max_token_size=32768, | ||
llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key}, | ||
embedding_func=EmbeddingFunc( | ||
embedding_dim=1024, | ||
max_token_size=8192, | ||
func=lambda texts: openai_embedding( | ||
texts=texts, | ||
model="text-embedding-bge-m3", | ||
base_url="http://127.0.0.1:1234/v1", | ||
api_key=api_key, | ||
), | ||
), | ||
) | ||
|
||
with open("./book.txt", "r", encoding="utf-8") as f: | ||
rag.insert(f.read()) | ||
|
||
resp = rag.query( | ||
"What are the top themes in this story?", | ||
param=QueryParam(mode="hybrid", stream=True), | ||
) | ||
|
||
|
||
async def print_stream(stream): | ||
async for chunk in stream: | ||
if chunk: | ||
print(chunk, end="", flush=True) | ||
|
||
|
||
loop = always_get_an_event_loop() | ||
if inspect.isasyncgen(resp): | ||
loop.run_until_complete(print_stream(resp)) | ||
else: | ||
print(resp) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam | ||
|
||
__version__ = "1.0.4" | ||
__version__ = "1.0.5" | ||
__author__ = "Zirui Guo" | ||
__url__ = "https://github.com/HKUDS/LightRAG" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters