Skip to content

Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding [ACL 2022]

Notifications You must be signed in to change notification settings

GanjinZero/ICD-MSMN

Repository files navigation

ICD-MSMN

The offical implementation of "Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding" [ACL 2022]

Environment

All codes are tested under Python 3.7, PyTorch 1.7.0. Need to install opt_einsum for einsum calculations. At least 32GB GPU are needed for training MIMIC-III full setting.

Dataset

We only put several samples for each dataset. One need to obtain licences to download MIMIC-III dataset. Once you obtain the MIMIC-III dataset, please follow caml-mimic to preprocess the dataset. You should obtain train_full.csv, test_full.csv, dev_full.csv, train_50.csv, test_50.csv, dev_50.csv after preprocessing. Please put them under sample_data/mimic3. Then you should use preprocess/generate_data_new.ipynb for generating json format dataset.

Word embedding

Please download word2vec_sg0_100.model from LAAT. You need to change the path of word embedding.

Use our code

MIMIC-III Full (1 GPU):

CUDA_VISIBLE_DEVICES=0 python main.py --n_gpu 1 --version mimic3 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head 4 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 2 --gradient_accumulation_steps 8 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1  --term_count 4  --sort_method random --word_embedding_path word_embedding_path

MIMIC-III Full (8 GPUs):

NCCL_IB_DISABLE=1 CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node 8 --master_port=1212 --use_env  main.py --n_gpu 8 --version mimic3 --combiner lstm --rnn_dim 256 --num_layers 2 --decoder MultiLabelMultiHeadLAATV2 --attention_head 4 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 2 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1  --term_count 4  --sort_method random --word_embedding_path word_embedding_path

MIMIC-III 50:

CUDA_VISIBLE_DEVICES=0 python main.py --version mimic3-50 --combiner lstm --rnn_dim 512 --num_layers 1 --decoder MultiLabelMultiHeadLAATV2 --attention_head 8 --attention_dim 512 --learning_rate 5e-4 --train_epoch 20 --batch_size 16 --gradient_accumulation_steps 1 --xavier --main_code_loss_weight 0.0 --rdrop_alpha 5.0 --est_cls 1 --term_count 8 --word_embedding_path word_embedding_path

Evaluate checkpoints

python eval_model.py MODEL_CHECKPOINT

mimic3 checkpoint

mimic3-50 checkpoint

Citation

@inproceedings{yuan-etal-2022-code,
    title = "Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic {ICD} Coding",
    author = "Yuan, Zheng  and
      Tan, Chuanqi  and
      Huang, Songfang",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-short.91",
    pages = "808--814",
    abstract = "Automatic ICD coding is defined as assigning disease codes to electronic medical records (EMRs).Existing methods usually apply label attention with code representations to match related text snippets.Unlike these works that model the label with the code hierarchy or description, we argue that the code synonyms can provide more comprehensive knowledge based on the observation that the code expressions in EMRs vary from their descriptions in ICD. By aligning codes to concepts in UMLS, we collect synonyms of every code. Then, we propose a multiple synonyms matching network to leverage synonyms for better code representation learning, and finally help the code classification. Experiments on the MIMIC-III dataset show that our proposed method outperforms previous state-of-the-art methods.",
}

About

Code Synonyms Do Matter: Multiple Synonyms Matching Network for Automatic ICD Coding [ACL 2022]

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published